It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Creating microenvironments that mimic an enzyme’s active site is a critical aspect of supramolecular confined catalysis. In this study, we employ the commonly used chiral 1,1’-bi-2-naphthol (BINOL) phosphates as subcomponents to construct supramolecular hollow nanotube in an aqueous medium through non-covalent intermolecular recognition and arrangement. The hexagonal nanotubular structure is characterized by various techniques, including X-ray, NMR, ESI-MS, AFM, and TEM, and is confirmed to exist in a homogeneous aqueous solution stably. The nanotube’s length in solution depends on the concentration of chiral BINOL-phosphate as a monomer. Additionally, the assembled nanotube can accelerate the rate of the 3-aza-Cope rearrangement reaction by up to 85-fold due to the interior confinement effect. Based on the detailed kinetic and thermodynamic analyses, we propose that the chain-like substrates are constrained and pre-organized into a reactive chair-like conformation, which stabilizes the transition state of the reaction in the confined nanospace of the nanotube. Notably, due to the restricted conformer with less degrees of freedom, the entropic barrier is significantly reduced compared to the enthalpic barrier, resulting in a more pronounced acceleration effect.
Supramolecular confined catalysis aims to mimic the active pocket of an enzyme to enhance the efficiency and selectivity of catalytic reactions. Here, the authors describe the formation of chiral nanotubes stable in aqueous solution employing a chiral BINOL-phosphate which can accelerate the 3-aza-Cope rearrangement by a nanotubular interior confinement effect.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details


1 South China Normal University, School of Chemistry, Guangzhou, China (GRID:grid.263785.d) (ISNI:0000 0004 0368 7397); Guangzhou Key Laboratory of Energy Conversion and Energy Storage Materials, Guangzhou, China (GRID:grid.263785.d); The Joint Laboratory of Energy Materials Chemistry for SCNU and TINCI, Guangzhou, China (GRID:grid.263785.d) (ISNI:0000 0004 0368 7397)
2 South China Normal University, School of Chemistry, Guangzhou, China (GRID:grid.263785.d) (ISNI:0000 0004 0368 7397)