It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
In this thesis we study cobordism categories consisting of manifolds which are endowed with geometric structure. Examples of such geometric structures include symplectic structures, flat connections on principal bundles, and complex structures along with a holomorphic map to a target complex manifold. A general notion of "geometric structure" is defined using sheaf-theoretic constructions. Our main theorem is the identification of the homotopy type of such cobordism categories in terms of explicit Thom spectra. This extends work of Galatius-Madsen-Tillmann-Weiss who identify the homotopy type of cobordism categories of manifolds with fiberwise structures on their tangent bundles. Interpretations of the main theorem are discussed which have relevance to topological field theories, moduli spaces of geometric structures, and h-principles. Applications of the main theorem to various examples of interest in geometry, particularly holomorphic curves, are elaborated upon.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer