Abstract

Magnetic field effects on electrocatalysis have recently gained attention due to the substantial enhancement of the oxygen evolution reaction (OER) on ferromagnetic catalysts. When detecting an enhanced catalytic activity, the effect of magnetic fields on mass transport must be assessed. In this study, we employ a specifically designed magneto-electrochemical system and non-magnetic electrodes to quantify magnetic field effects. Our findings reveal a marginal enhancement in reactions with high reactant availability, such as the OER, whereas substantial boosts exceeding 50% are observed in diffusion limited reactions, exemplified by the oxygen reduction reaction (ORR). Direct visualization and quantification of the whirling motion of ions under a magnetic field underscore the importance of Lorentz forces acting on the electrolyte ions, and demonstrate that bubbles’ movement is a secondary phenomenon. Our results advance the fundamental understanding of magnetic fields in electrocatalysis and unveil new prospects for developing more efficient and sustainable energy conversion technologies.

Magnetic fields can enhance electrocatalysis, yet its effect on mass transport has been overlooked. Here, the authors track the motion induced on the electrolyte ions, demonstrating that mass transport effects can double the catalyst activity with low reactant availability, as in oxygen reduction.

Details

Title
Enhancement of electrocatalysis through magnetic field effects on mass transport
Author
Vensaus, Priscila 1   VIAFID ORCID Logo  ; Liang, Yunchang 2   VIAFID ORCID Logo  ; Ansermet, Jean-Philippe 3 ; Soler-Illia, Galo J. A. A. 4   VIAFID ORCID Logo  ; Lingenfelder, Magalí 2   VIAFID ORCID Logo 

 École Polytechnique Fédérale de Lausanne (EPFL), Max Planck-EPFL Laboratory for Molecular Nanoscience and Technology, Lausanne, Switzerland (GRID:grid.5333.6) (ISNI:0000 0001 2183 9049); École Polytechnique Fédérale de Lausanne (EPFL), Institute of Physics (IPHYS), Lausanne, Switzerland (GRID:grid.5333.6) (ISNI:0000 0001 2183 9049); Escuela de Bio y Nanotecnologías, Universidad Nacional de San Martín, San Martín, Instituto de Nanosistemas, Buenos Aires, Argentina (GRID:grid.108365.9) (ISNI:0000 0001 2105 0048) 
 École Polytechnique Fédérale de Lausanne (EPFL), Max Planck-EPFL Laboratory for Molecular Nanoscience and Technology, Lausanne, Switzerland (GRID:grid.5333.6) (ISNI:0000 0001 2183 9049); École Polytechnique Fédérale de Lausanne (EPFL), Institute of Physics (IPHYS), Lausanne, Switzerland (GRID:grid.5333.6) (ISNI:0000 0001 2183 9049) 
 École Polytechnique Fédérale de Lausanne (EPFL), Institute of Physics (IPHYS), Lausanne, Switzerland (GRID:grid.5333.6) (ISNI:0000 0001 2183 9049) 
 Escuela de Bio y Nanotecnologías, Universidad Nacional de San Martín, San Martín, Instituto de Nanosistemas, Buenos Aires, Argentina (GRID:grid.108365.9) (ISNI:0000 0001 2105 0048) 
Pages
2867
Publication year
2024
Publication date
2024
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3031452047
Copyright
© The Author(s) 2024. corrected publication 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.