It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Rare-earth monopnictides are a family of materials simultaneously displaying complex magnetism, strong electronic correlation, and topological band structure. The recently discovered emergent arc-like surface states in these materials have been attributed to the multi-wave-vector antiferromagnetic order, yet the direct experimental evidence has been elusive. Here we report observation of non-collinear antiferromagnetic order with multiple modulations using spin-polarized scanning tunneling microscopy. Moreover, we discover a hidden spin-rotation transition of single-to-multiple modulations 2 K below the Néel temperature. The hidden transition coincides with the onset of the surface states splitting observed by our angle-resolved photoemission spectroscopy measurements. Single modulation gives rise to a band inversion with induced topological surface states in a local momentum region while the full Brillouin zone carries trivial topological indices, and multiple modulation further splits the surface bands via non-collinear spin tilting, as revealed by our calculations. The direct evidence of the non-collinear spin order in NdSb not only clarifies the mechanism of the emergent topological surface states, but also opens up a new paradigm of control and manipulation of band topology with magnetism.
Several recent experimental studies have found disconnected Fermi surface arcs emerging below the Neel temperature in several rare-earth mono-pnictides. While these electronic states have been attributed to a non-collinear antiferromagnetic order, experimental evidence of this has been lacking. Here Huang et al demonstrate the emergence of non-collinear antiferromagnetic order using spin-polarized scanning tunnelling microscopy.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details







1 Rutgers University, Department of Physics & Astronomy, Piscataway, USA (GRID:grid.430387.b) (ISNI:0000 0004 1936 8796)
2 The Pennsylvania State University, Department of Physics, University Park, USA (GRID:grid.29857.31) (ISNI:0000 0001 2097 4281)
3 Rutgers University, Department of Physics & Astronomy, Piscataway, USA (GRID:grid.430387.b) (ISNI:0000 0004 1936 8796); Weizmann Institute of Science, Department of Condensed Matter Physics, Rehovot, Israel (GRID:grid.13992.30) (ISNI:0000 0004 0604 7563)
4 Weizmann Institute of Science, Department of Condensed Matter Physics, Rehovot, Israel (GRID:grid.13992.30) (ISNI:0000 0004 0604 7563)