It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Analyzing the stability of footings is a significant step in civil/geotechnical engineering projects. In this work, two novel predictive tools are suggested based on an artificial neural network (ANN) to analyze the bearing capacity of a footing installed on a two-layered soil mass. To this end, backtracking search algorithm (BSA) and equilibrium optimizer (EO) are employed to train the ANN for approximating the stability value (SV) of the system. After executing a set of finite element analyses, the settlement values lower/higher than 5 cm are considered to indicate the stability/failure of the system. The results demonstrated the efficiency of these algorithms in fulfilling the assigned task. In detail, the training error of the ANN (in terms of root mean square error—RMSE)) dropped from 0.3585 to 0.3165 (11.72%) and 0.2959 (17.46%) by applying the BSA and EO, respectively. Moreover, the prediction accuracy of the ANN climbed from 93.7 to 94.3% and 94.1% (in terms of area under the receiving operating characteristics curve—AUROC). A comparison between the elite complexities of these algorithms showed that the EO enjoys a larger accuracy, while BSA is a more time-effective optimizer. Lastly, an explicit mathematical formula is derived from the EO-ANN model to be conveniently used in predicting the SV.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Changchun Institute of Technology, Bim School of Technology and Industry, Changchun, China (GRID:grid.443293.b) (ISNI:0000 0004 1761 4287)
2 Jilin Engineering Normal University, Infrastructure Logistics Office, Changchun, China (GRID:grid.443318.9)




