Abstract
Superalloy Inconel718 is an important material for aircraft preparation because of its excellent performance at high temperatures. However, when cutting Inconel718, a large amount of cutting heat will be generated, resulting in excessive tool temperature and serious wear, which accelerates the tool failure. In order to solve this problem, the influence of tool angle on the process of thermal aided machining was studied by simulation model combined with thermal aided machining technology. During the cutting process, the workpiece preheating temperature rises from room temperature 20° C to 500° C, the front tool angle range is − 5° to 10°, and the rear tool angle range is 4° to 16°. By analyzing various parameters, it was found that a smaller tool rake angle can effectively reduce the tool temperature. Additionally, a flank angle of around 12° was found to decrease the maximum wear area of the tool by approximately 10.5%. Moreover, it was observed that implementing heat-assisted machining can result in a significant reduction of tool temperature by 11.1%, as well as a decrease in cutting force ranging from 18 to 22%, particularly at temperatures exceeding 500 °C.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 College of Mechanical and Electronic Engineering, Shandong Agriculture and Engineering University, Jinan, People’s Republic of China (GRID:grid.494558.1) (ISNI:0000 0004 1796 3356)
2 Jiangsu University, Zhenjiang, People’s Republic of China (GRID:grid.440785.a) (ISNI:0000 0001 0743 511X)





