Full Text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Simple Summary

Cancer is the second leading cause of death worldwide, accounting for nearly one in six deaths. One of the key underlying factors distinguishing a cancer cell from a normal cell is the pattern of expression of genes. Proteins that regulate gene expression, called transcription factors, are abnormally regulated in cancer cells, particularly a group of proteins called STATs. This causes cancer cells to survive, proliferate excessively, and escape killing by the immune system. Since normal cells can survive adequately without full STAT function, targeting these proteins is an attractive approach for a new generation of more effective and less toxic cancer therapies. In this review, we summarize the current knowledge of STAT function in cancer and the advances and challenges in developing drugs to target them.

Abstract

Despite advances in our understanding of molecular aspects of oncogenesis, cancer remains a leading cause of death. The malignant behavior of a cancer cell is driven by the inappropriate activation of transcription factors. In particular, signal transducers and activators of transcription (STATs), which regulate many critical cellular processes such as proliferation, apoptosis, and differentiation, are frequently activated inappropriately in a wide spectrum of human cancers. Multiple signaling pathways converge on the STATs, highlighting their importance in the development and progression of oncogenic diseases. STAT3 and STAT5 are two members of the STAT protein family that are the most frequently activated in cancers and can drive cancer pathogenesis directly. The development of inhibitors targeting STAT3 and STAT5 has been the subject of intense investigations in the last decade, although effective treatment options remain limited. In this review, we investigate the specific roles of STAT3 and STAT5 in normal physiology and cancer biology, discuss the opportunities and challenges in pharmacologically targeting STAT proteins and their upstream activators, and offer insights into novel therapeutic strategies to identify STAT inhibitors as cancer therapeutics.

Details

Title
Oncogenic STAT Transcription Factors as Targets for Cancer Therapy: Innovative Strategies and Clinical Translation
Author
Wang, Weiyuan 1 ; Lopez McDonald, Melanie Cristina 1 ; Hariprasad, Rajashree 2 ; Hamilton, Tiara 1 ; Frank, David A 1   VIAFID ORCID Logo 

 Department of Hematology and Medical Oncology, Winship Cancer Institute, School of Medicine, Emory University, Atlanta, GA 30322, USA; [email protected] (W.W.); [email protected] (M.C.L.M.); [email protected] (T.H.) 
 Alabama College of Osteopathic Medicine, Dothan, AL 36303, USA; [email protected] 
First page
1387
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
20726694
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3037384313
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.