Content area

Abstract

When designing a system at the Electronic System Level (ESL), designers are confronted with a very large number of design decisions, each affecting the characteristics of the resulting system. Simultaneously, the demands for the system’s performance, reliability, and energy consumption have increased drastically. Design Space Exploration (DSE) aims to facilitate this complex task by automating the system synthesis and traversing the design space autonomously. Previous studies on DSE have mainly considered fixed architectures with a fixed set of hardware components only. In the paper at hand, we overcome this limitation to allow for a higher degree of freedom in the design of a multiprocessor system. Instead of a fixed architecture as input, we are using a resource library containing resource types whose instances can then be arbitrarily placed and connected. More specifically, we enable the exploration of the types, the number, and the positions of required processing-type instances in a grid-based topology template in addition to deciding on the remaining system synthesis tasks, namely, resource allocation, task binding, routing, and scheduling. We provide an extensible framework, based on Answer Set Programming (ASP) modulo Theories (ASPmT), for generating system architectures fulfilling predefined constraints. Our studies show that this higher degree of freedom, originating from fewer restrictions regarding the architecture, leads to an increased complexity of the problem. In extensive experiments, we show scalability trends for a set of parameters, demonstrating the capabilities and limits of our approach.

Details

1009240
Business indexing term
Title
Generative Design of the Architecture Platform in Multiprocessor System Design
Publication title
Volume
13
Issue
7
First page
1404
Publication year
2024
Publication date
2024
Publisher
MDPI AG
Place of publication
Basel
Country of publication
Switzerland
Publication subject
e-ISSN
20799292
Source type
Scholarly Journal
Language of publication
English
Document type
Journal Article
Publication history
 
 
Online publication date
2024-04-08
Milestone dates
2024-02-15 (Received); 2024-04-05 (Accepted)
Publication history
 
 
   First posting date
08 Apr 2024
ProQuest document ID
3037500979
Document URL
https://www.proquest.com/scholarly-journals/generative-design-architecture-platform/docview/3037500979/se-2?accountid=208611
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2024-09-24
Database
ProQuest One Academic