Full Text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Aqueous zinc–iodine batteries are considered to be one of the most promising devices for future electrical energy storage due to their low cost, high safety, high theoretical specific capacity, and multivalent properties. However, the shuttle effect currently faced by zinc–iodine batteries causes the loss of cathode active material and corrosion of the zinc anodes, limiting the large-scale application of zinc–iodine batteries. In this paper, the electrochemical processes of iodine conversion and the zinc anode, as well as the induced mechanism of the shuttle effect, are introduced from the basic configuration of the aqueous zinc–iodine battery. Then, the inhibition strategy of the shuttle effect is summarized from four aspects: the design of cathode materials, electrolyte regulation, the modification of the separator, and anode protection. Finally, the current status of aqueous zinc–iodine batteries is analyzed and recommendations and perspectives are presented. This review is expected to deepen the understanding of aqueous zinc–iodide batteries and is expected to guide the design of high-performance aqueous zinc–iodide batteries.

Details

Title
Suppressing the Shuttle Effect of Aqueous Zinc–Iodine Batteries: Progress and Prospects
Author
Li, Mengyao 1 ; Wu, Juan 1 ; Li, Haoyu 1 ; Wang, Yude 2   VIAFID ORCID Logo 

 National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, China 
 Yunnan Key Laboratory of Carbon Neutrality and Green Low-Carbon Technologies, Yunnan University, Kunming 650504, China 
First page
1646
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
19961944
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3037562299
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.