It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
In response to the increasing complexity and volume of patent applications, this research introduces a semiautomated system to streamline the literature review process for Indonesian patent data. The proposed system employs a synthesis of multilabel classification techniques based on natural language processing (NLP) algorithms. This methodology focuses on developing an iterative and modular system, with each step visualised in detailed flowcharts. The system design incorporates data collection and preprocessing, multilabel classification model development, model optimisation, query and prediction, and results presentation modules. Experimental results demonstrate the promising potential of the multilabel classification model, achieving a micro F1 score of 0.6723 and a macro F1 score of 0.6009. The OneVsRestClassifier model with LinearSVC as the base classifier shows reasonably good performance in handling a bilingual dataset comprising 15,097 patent documents. The optimal model configuration uses TfidfVectorizer with 20,000 features, including bigrams, and an optimal C parameter of 0.1 for LinearSVC. Performance analysis reveals variations across IPC classes, indicating areas for further improvement. The discussion highlights the implications of the proposed system for researchers, patent examiners and industry professionals by facilitating efficient searches within patent databases. This study acknowledges the potential of semiautomated systems to enhance the efficiency of patent analysis while emphasising the need for further research to address identified challenges, such as class imbalance and performance variations across patent categories. This research paves the way for further developments in the field of automated patent classification, aiming to improve efficiency and accuracy in international patent systems while recognising the crucial role of human experts in the patent classification process.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer





