Full Text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In contemporary warfare, radar countermeasures have become multifunctional and intelligent, rendering the conventional jamming method and platform unsuitable for the modern radar countermeasures battlefield due to their limited efficiency. Reinforcement learning has been proven to be a practical solution for cognitive jamming decision-making in the cognitive electronic warfare. In this paper, we proposed a radar-jamming decision-making algorithm based on an improved Q-Learning algorithm. This improved Q-Learning algorithm ameliorated the problem of overestimating the Q-value that exists in the Q-Learning algorithm by introducing a second Q-table. At the same time, we performed a comprehensive design and implementation based on the classical Q-Learning algorithm, deploying it to a Field Programmable Gate Array (FPGA) hardware. We decomposed the implementation of the reinforcement learning algorithm into individual steps and described each step using a hardware description language. Then, the reinforcement learning algorithm can be computed on FPGA by linking the logic modules with valid signals. Experiments show that the proposed Q-Learning algorithm obtains considerable improvement in performance over the classical Q-Learning algorithm. Additionally, they confirm that the FPGA hardware can achieve great efficiency improvement on the radar-jamming decision-making algorithm implementation.

Details

Title
Radar-Jamming Decision-Making Based on Improved Q-Learning and FPGA Hardware Implementation
Author
Zheng, Shujian; Zhang, Chudi  VIAFID ORCID Logo  ; Hu, Jun; Xu, Shiyou
First page
1190
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3037631103
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.