Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Phishing is one of the most dangerous attacks targeting individuals, organizations, and nations. Although many traditional methods for email phishing detection exist, there is a need to improve accuracy and reduce false-positive rates. Our work investigates one-dimensional CNN-based models (1D-CNNPD) to detect phishing emails in order to address these challenges. Additionally, further improvement is achieved with the augmentation of the base 1D-CNNPD model with recurrent layers, namely, LSTM, Bi-LSTM, GRU, and Bi-GRU, and experimented with the four resulting models. Two benchmark datasets were used to evaluate the performance of our models: Phishing Corpus and Spam Assassin. Our results indicate that, in general, the augmentations improve the performance of the 1D-CNNPD base model. Specifically, the 1D-CNNPD with Bi-GRU yields the best results. Overall, the performance of our models is comparable to the state of the art of CNN-based phishing email detection. The Advanced 1D-CNNPD with Leaky ReLU and Bi-GRU achieved 100% precision, 99.68% accuracy, an F1 score of 99.66%, and a recall of 99.32%. We observe that increasing model depth typically leads to an initial performance improvement, succeeded by a decline. In conclusion, this study highlights the effectiveness of augmented 1D-CNNPD models in detecting phishing emails with improved accuracy. The reported performance measure values indicate the potential of these models in advancing the implementation of cybersecurity solutions to combat email phishing attacks.

Details

Title
Advancing Phishing Email Detection: A Comparative Study of Deep Learning Models
Author
Altwaijry, Najwa 1   VIAFID ORCID Logo  ; Al-Turaiki, Isra 1   VIAFID ORCID Logo  ; Alotaibi, Reem 2 ; Alakeel, Fatimah 3 

 Department of Computer Science, College of Computer and Information Sciences, King Saud University, Riyadh 11653, Saudi Arabia; [email protected] 
 Information Technology Department, College of Computer and Information Sciences, King Saud University, Riyadh 11451, Saudi Arabia; [email protected] 
 Department of Computer Science and Engineering, College of Applied Studies and Community Service, King Saud University, Riyadh 11495, Saudi Arabia; [email protected] 
First page
2077
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3037631228
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.