Full Text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Electrical impedance spectroscopy (EIS) has been proposed as a promising noninvasive method to differentiate healthy thyroid from parathyroid tissues during thyroidectomy. However, previously reported similarities in the in vivo measured spectra of these tissues during a pilot study suggest that this separation may not be straightforward. We utilise computational modelling as a method to elucidate the distinguishing characteristics in the EIS signal and explore the features of the tissue that contribute to the observed electrical behaviour. Firstly, multiscale finite element models (or ‘virtual tissue constructs’) of thyroid and parathyroid tissues were developed and verified against in vivo tissue measurements. A global sensitivity analysis was performed to investigate the impact of physiological micro-, meso- and macroscale tissue morphological features of both tissue types on the computed macroscale EIS spectra and explore the separability of the two tissue types. Our results suggest that the presence of a surface fascia layer could obstruct tissue differentiation, but an analysis of the separability of simulated spectra without the surface fascia layer suggests that differentiation of the two tissue types should be possible if this layer is completely removed by the surgeon. Comprehensive in vivo measurements are required to fully determine the potential for EIS as a method in distinguishing between thyroid and parathyroid tissues.

Details

Title
The Use of Virtual Tissue Constructs That Include Morphological Variability to Assess the Potential of Electrical Impedance Spectroscopy to Differentiate between Thyroid and Parathyroid Tissues during Surgery
Author
Matella, Malwina 1   VIAFID ORCID Logo  ; Hunter, Keith 2 ; Balasubramanian, Saba 3 ; Walker, Dawn 1   VIAFID ORCID Logo 

 Department of Computer Science, University of Sheffield, Sheffield S1 4DP, UK; [email protected]; Insigneo Institute for In Silico Medicine, Sheffield S1 3JD, UK 
 Liverpool Head and Neck Centre, Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool L69 7TX, UK; [email protected] 
 Department of Oncology and Metabolism, Royal Hallamshire Hospital School of Medicine and Biomedical Sciences, University of Sheffield, Sheffield S10 2RX, UK; [email protected] 
First page
2198
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3037631293
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.