It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Grain boundary solute segregation influences most bulk material properties, and understanding solute thermodynamics at grain boundaries is critical for engineering them. However, the vast grain boundary space in polycrystals is challenging to evaluate due to its size, especially for the intrinsically hard-to-compute segregation excess entropy. Here data science methods are used to generate a database of site-wise grain boundary segregation entropy spectra for 155 dilute binary alloys within the harmonic approximation. The spectral framework allows scale bridging between the calculated atomistic site-wise energy-entropy spectra and macroscopic segregation entropy estimates. The results affirm that macroscopic averaging is not sufficient: a spectral treatment of grain boundary segregation is needed to accurately model bulk temperature dependence of grain boundary solute segregation. The calculated spectral entropy database and thermodynamic framework can be applied for both understanding segregation experiments and alloy design exercises, paving the way to a finite-temperature grain boundary genome.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details


1 Massachusetts Institute of Technology, Department of Materials Science and Engineering, Cambridge, USA (GRID:grid.116068.8) (ISNI:0000 0001 2341 2786)
2 Massachusetts Institute of Technology, Department of Materials Science and Engineering, Cambridge, USA (GRID:grid.116068.8) (ISNI:0000 0001 2341 2786); Northwestern University, Department of Materials Science and Engineering, Evanston, USA (GRID:grid.16753.36) (ISNI:0000 0001 2299 3507)