Abstract/Details

Characterization of a class of torsion-free Abelian groups

Yom, Peter Dongjun. 
 University of Connecticut ProQuest Dissertations Publishing,  1990. 9102050.

Abstract (summary)

This dissertation is devoted to characterizing a class of corank-1 pure subgroups of completely decomposable groups: Bulter groups of the form G(${\cal A}$) = the kernel of the summation map $\Sigma$: A$\sb1$ $\oplus\...\oplus$ A$\sb{\rm n}\to\doubq$, where ${\cal A}$ = (A$\sb1$,$\...$,A$\sb{\rm n}$) is an n-tuple of subgroups of the group of rationals $\doubq$. Specifically, G(${\cal A}$) and G(${\cal B}$) are quasi-isomorphic if and only if there is a sequence to two-vertex exchanges transforming ${\cal A}$ to ${\cal B}$. A dual theorem is given for the class of Bulter groups of the form G (${\cal A}$), where G (${\cal A}$) = (A$\sb{1}\oplus\...\oplus$ A$\sb{\rm n}$) / $\langle\{({\rm a},\...,{\rm a})\mid0\not={\rm a}\in\cap{\rm A\sb{i}}\}\rangle$.

Indexing (details)


Subject
Mathematics
Classification
0405: Mathematics
Identifier / keyword
Pure sciences; Butler groups
Title
Characterization of a class of torsion-free Abelian groups
Author
Yom, Peter Dongjun
Number of pages
55
Degree date
1990
School code
0056
Source
DAI-B 51/08, Dissertation Abstracts International
Place of publication
Ann Arbor
Country of publication
United States
ISBN
979-8-207-44498-7
University/institution
University of Connecticut
University location
United States -- Connecticut
Degree
Ph.D.
Source type
Dissertation or Thesis
Language
English
Document type
Dissertation/Thesis
Dissertation/thesis number
9102050
ProQuest document ID
303843670
Copyright
Database copyright ProQuest LLC; ProQuest does not claim copyright in the individual underlying works.
Document URL
https://www.proquest.com/docview/303843670/abstract