Content area

Abstract

Currently, there is a growing trend of outsourcing the execution of DNNs to cloud services. For service providers, managing multi-tenancy and ensuring high-quality service delivery, particularly in meeting stringent execution time constraints, assumes paramount importance, all while endeavoring to maintain cost-effectiveness. In this context, the utilization of heterogeneous multi-accelerator systems becomes increasingly relevant. This paper presents RELMAS, a low-overhead deep reinforcement learning algorithm designed for the online scheduling of DNNs in multi-tenant environments, taking into account the dataflow heterogeneity of accelerators and memory bandwidths contentions. By doing so, service providers can employ the most efficient scheduling policy for user requests, optimizing Service-Level-Agreement (SLA) satisfaction rates and enhancing hardware utilization. The application of RELMAS to a heterogeneous multi-accelerator system composed of various instances of Simba and Eyeriss sub-accelerators resulted in up to a 173% improvement in SLA satisfaction rate compared to state-of-the-art scheduling techniques across different workload scenarios, with less than a 1.5% energy overhead.

Details

1009240
Title
Deep Reinforcement Learning based Online Scheduling Policy for Deep Neural Network Multi-Tenant Multi-Accelerator Systems
Publication title
arXiv.org; Ithaca
Publication year
2024
Publication date
Apr 13, 2024
Section
Computer Science
Publisher
Cornell University Library, arXiv.org
Source
arXiv.org
Place of publication
Ithaca
Country of publication
United States
University/institution
Cornell University Library arXiv.org
e-ISSN
2331-8422
Source type
Working Paper
Language of publication
English
Document type
Working Paper
Publication history
 
 
Online publication date
2024-04-16
Milestone dates
2024-04-13 (Submission v1)
Publication history
 
 
   First posting date
16 Apr 2024
ProQuest document ID
3039629878
Document URL
https://www.proquest.com/working-papers/deep-reinforcement-learning-based-online/docview/3039629878/se-2?accountid=208611
Full text outside of ProQuest
Copyright
© 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2024-04-17
Database
ProQuest One Academic