Abstract/Details

Generalizations ofde Montessus de Ballore's theorem on the row convergence of rational approximants

Liu, Xiaoyan. 
 University of South Florida ProQuest Dissertations Publishing,  1992. 9235077.

Abstract (summary)

Let $\Pi\sb{m}$ denote the collection of all algebraic polynomials of degree at most m. A rational function $r\sb{m,n}(z)$ is said to be of type $(m,n)$ if it is of the form $r\sb{m,n}(z) = p\sb{m}(z)/q\sb{n}(z),\ q\sb{n} (z) \not\equiv 0,$ where $p\sb{m} \in \Pi\sb{m}$ and $q\sb{n} \in \Pi\sb{n}.$ Let E be a compact set whose complement K (with respect to the extended plane) is connected and possesses a classical Green's function $G(z)$ with a pole at infinity. Let $\Gamma\sb\sigma(\sigma > 1)$ denote generically the locus $G(z) = \log\sigma$ and let $E\sb\sigma$ be the interior of $\Gamma\sb\sigma.$ Suppose the function $f(z)$ is analytic on E and meromorphic with precisely $\mu$ poles (counting multiplicity) on $E\sb\rho.$ The classical de Montessus Theorem and analogous theorems guarantee the convergence of the $(\mu + 1)$th row sequence $\{ r\sb{n,\mu}(z)\}\sbsp{n=0}{\infty}$ of certain rational approximation arrays to $f(z),$ where the permissible degree of the denominators is the same as the number of poles. When the degree of the denominators is not the same as the number of poles of $f(z),$ the situation becomes very complicated. In this paper we thoroughly investigate the latter situation for the case of meromorphic functions f; namely, the convergence of row sequences $\{r\sb{n,\nu}(z)\}\sbsp{n=0}{\infty}$ from the best rational approximation array, the Pade array, and general interpolation arrays for $\nu \ne \mu.$ We give a straightforward criterion for convergence of all row sequences. In contrast to previously known theorems, this criterion is in explicit form so it is easy to apply. Also we give estimates for the rate of convergence in the appropriate cases. Furthermore, we have proved that $\{r\sb{n,\nu}(z)\}\sbsp{n=0}{\infty}$ is divergent outside $\Gamma\sb\rho$ when 0 $\le \nu < \mu$ and show some applications of our results to the zero distribution of orthogonal polynomials.

Indexing (details)


Subject
Mathematics
Classification
0405: Mathematics
Identifier / keyword
Pure sciences
Title
Generalizations ofde Montessus de Ballore's theorem on the row convergence of rational approximants
Author
Liu, Xiaoyan
Number of pages
154
Degree date
1992
School code
0206
Source
DAI-B 53/07, Dissertation Abstracts International
Place of publication
Ann Arbor
Country of publication
United States
ISBN
979-8-208-54438-9
Advisor
Saff, Edward B.
University/institution
University of South Florida
University location
United States -- Florida
Degree
Ph.D.
Source type
Dissertation or Thesis
Language
English
Document type
Dissertation/Thesis
Dissertation/thesis number
9235077
ProQuest document ID
304033483
Copyright
Database copyright ProQuest LLC; ProQuest does not claim copyright in the individual underlying works.
Document URL
https://www.proquest.com/docview/304033483