Content area

Abstract

Automatic Program Repair (APR) has garnered significant attention as a practical research domain focused on automatically fixing bugs in programs. While existing APR techniques primarily target imperative programming languages like C and Java, there is a growing need for effective solutions applicable to declarative software specification languages. This paper presents a systematic investigation into the capacity of Large Language Models (LLMs) for repairing declarative specifications in Alloy, a declarative formal language used for software specification. We propose a novel repair pipeline that integrates a dual-agent LLM framework, comprising a Repair Agent and a Prompt Agent. Through extensive empirical evaluation, we compare the effectiveness of LLM-based repair with state-of-the-art Alloy APR techniques on a comprehensive set of benchmarks. Our study reveals that LLMs, particularly GPT-4 variants, outperform existing techniques in terms of repair efficacy, albeit with a marginal increase in runtime and token usage. This research contributes to advancing the field of automatic repair for declarative specifications and highlights the promising potential of LLMs in this domain.

Details

1009240
Identifier / keyword
Title
An Empirical Evaluation of Pre-trained Large Language Models for Repairing Declarative Formal Specifications
Publication title
arXiv.org; Ithaca
Publication year
2024
Publication date
Apr 17, 2024
Section
Computer Science
Publisher
Cornell University Library, arXiv.org
Source
arXiv.org
Place of publication
Ithaca
Country of publication
United States
University/institution
Cornell University Library arXiv.org
e-ISSN
2331-8422
Source type
Working Paper
Language of publication
English
Document type
Working Paper
Publication history
 
 
Online publication date
2024-04-18
Milestone dates
2024-04-17 (Submission v1)
Publication history
 
 
   First posting date
18 Apr 2024
ProQuest document ID
3040953706
Document URL
https://www.proquest.com/working-papers/empirical-evaluation-pre-trained-large-language/docview/3040953706/se-2?accountid=208611
Full text outside of ProQuest
Copyright
© 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2024-04-19
Database
ProQuest One Academic