It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The neutron induced nuclear reaction cross sections of fission products are related with the neutron fiux and the reactor burnup, which are important for the accurate of nuclear engineering design. To predict the (n,2n) reaction cross section, especially those lack of experimental measurements, we analyzed the relevant features and establish the experimental data set on the basis of sorting out the experimental data recorded in EXFOR library. The back propagation artificial neural network (ANN) and decision tree (DT) models are built to learn the experimental data set, respectively, adopting PyTorch and XGBOOST toolboxes. we report that machine learning models are applied to analysis and predicate (n,2n) reaction cross section.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer