Content area

Abstract

Fluid-driven fracture is a fundamental geophysical phenomenon operating in planetary interiors on many scales. A few examples of geological processes involving fluid transport via self-induced fractures include melt segregation in the mantle, magma ascent through the lithosphere, crustal accretion at mid-ocean ridges and volcanic “hot spots”, migration of metamorphic and sedimentary fluids in the crust, etc. Overall, fluid-driven (in particular, magma-driven) fracture plays a major role in chemical differentiation of the upper mantle. Because our ability to make direct observations of the dynamics and styles of fluid-driven fracture is quite limited, our understanding of this phenomenon relies on theoretical models that use fundamental physical principles and available field data to constrain the behavior of fluid-driven cracks at depth.

This thesis proposes new and more accurate ways of theoretical and experimental description of magma transport in self-induced fractures, or dikes. Dike propagation is a complex process that involves elastic and inelastic deformation of the host rocks, rock fracture, viscous flow of magma, heat transfer, and phase transitions (e.g., rock crystallization and fusion, volatile exolution etc.). We consider relationships between different physical processes associated with magma transport in dikes by solving appropriate boundary value problems of continuum mechanics and heat and mass transfer. The first chapter of this thesis revises existing interpretations of available experimental data bearing on the role of fracture resistance in the overall energy balance during dike propagation. It is shown for the first time that the experimental data indicate that the rock tensile fracture energy, which is not a material property at elevated confining pressures, may substantially increase under in-situ stress conditions. The second chapter concentrates on the interaction between magma flow, heat transfer and phase changes associated with dike emplacement, and discusses some important implications of our results for the generation of the Earth's crust at mid-ocean ridges. In particular, we find that the thermal arrest lengths of typical mid-ocean ridge dikes are of the order of the wavelength of crustal thickness variations and transform fault spacing along slow spreading ridges. This suggests that thermal controls on the crustal melt delivery system could be an important factor in modulating these variations. The third chapter deals with fluid-mechanical aspects of lateral dike propagation in volcanic rift zones. We demonstrate the existence of a feedback between viscous pressure losses during magma transport at depth and the along-strike surface topography of a rift zone. Our estimated values of the along-strike slopes resulting from such a feedback are in general agreement with observations in Hawaiian rift zones. The fourth chapter explores mechanisms of emplacement of giant dike swarms that might have played a role in splitting continents and producing mass extinctions. We reconcile field observations of chilled margins, low crustal contamination, and large dike thicknesses with the theoretically inferred turbulent mode of magma flow in such dikes.

Details

Title
Fluid-driven fracture and melt transport through lithosphere on earth and terrestrial planets
Author
Fialko, Yuri Alex
Year
1998
Publisher
ProQuest Dissertations Publishing
ISBN
978-0-599-19586-8
Source type
Dissertation or Thesis
Language of publication
English
ProQuest document ID
304446767
Copyright
Database copyright ProQuest LLC; ProQuest does not claim copyright in the individual underlying works.