It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The article considers the theoretical component of Newton’s second-order method, its main advantages and disadvantages when used in geodesy. The algorithm for determining the minimum of target functions by the Newton method of the second order was studied and analyzed in detail. Parameters of connection between flat rectangular coordinate systems are calculated. The task of determining the transition keys is relevant for geodesy. Comparative analysis of Newton’s method with the method of conjugated gradients was carried out. The algorithm for solving this problem was implemented in the Visual Basic for Applications software environment. The obtained data allow us to conclude that the Newton method can be used more widely in geodesy, especially in solving nonlinear optimization problems. However, the successful implementation of the method in geodetic production is possible only if the computational process is automated, by writing software modules in various programming languages to solve a specific problem.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer





