Full text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The frequent occurrence of furazolidone (FZD) in environmental fluids reveals the ongoing increase in use and raises concerns about the need of monitoring it. To investigate the electrochemical behavior of FZD, a novel sensor of manganese molybdenum oxide (MMO) micro rods adorned three-dimensional porous carbon (PC) electrocatalyst was constructed. The crystalline structure and surface morphology of the MMO/PC composite was characterized by XRD, Raman, FESEM, and HR-TEM. Electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), and amperometric(i-t) methods were used to assess the electrocatalytic activity of modified electrodes. In the presence of FZD, the as-fabricated MMO/PC modified glassy carbon electrode (GCE) performed better at lower potentials with a greater peak current than other modified GCE. These results emanate from the synergistic effect of the MMO/PC suspension on the GCE. The electrochemical behavior of the amperometric(i-t) technique was used to determine FZD. Amperometric(i-t) detection yielded linear dynamic ranges of 150 nM to 41.05 µM and 41.05 to 471.05 µM with detection limits of 30 nM. The MMO/PC hybrid sensor was also effectively used to detect FZD in environmental fluids, yielding ultra-trace level detection.

Details

Title
Manganese Molybdenum Oxide Micro Rods Adorned Porous Carbon Hybrid Electrocatalyst for Electrochemical Determination of Furazolidone in Environmental Fluids
Author
Sivakumar Musuvadhi Babulal 1 ; Tse-Wei, Chen 2 ; Shen-Ming, Chen 1   VIAFID ORCID Logo  ; Al-Onazi, Wedad A 3 ; Al-Mohaimeed, Amal M 3   VIAFID ORCID Logo 

 Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan; [email protected] (S.M.B.); [email protected] (T.-W.C.) 
 Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan; [email protected] (S.M.B.); [email protected] (T.-W.C.); Research and Development Center for Smart Textile Technology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan; Department of Materials, Imperial College London, London SW72AZ, UK 
 Department of Chemistry, College of Science, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia; [email protected] 
First page
1397
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
20734344
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2602019963
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.