Abstract

The individual results of SARS-CoV-2 serological tests measured after the first pandemic wave of 2020 cannot be directly interpreted as a probability of having been infected. Plus, these results are usually returned as a binary or ternary variable, relying on predefined cut-offs. We propose a Bayesian mixture model to estimate individual infection probabilities, based on 81,797 continuous anti-spike IgG tests from Euroimmun collected in France after the first wave. This approach used serological results as a continuous variable, and was therefore not based on diagnostic cut-offs. Cumulative incidence, which is necessary to compute infection probabilities, was estimated according to age and administrative region. In France, we found that a “negative” or a “positive” test, as classified by the manufacturer, could correspond to a probability of infection as high as 61.8% or as low as 67.7%, respectively. “Indeterminate” tests encompassed probabilities of infection ranging from 10.8 to 96.6%. Our model estimated tailored individual probabilities of SARS-CoV-2 infection based on age, region, and serological result. It can be applied in other contexts, if estimates of cumulative incidence are available.

Details

Title
Estimating SARS-CoV-2 infection probabilities with serological data and a Bayesian mixture model
Author
Glemain, Benjamin 1 ; de Lamballerie, Xavier 2 ; Zins, Marie 3 ; Severi, Gianluca 4 ; Touvier, Mathilde 5 ; Deleuze, Jean-François 6 ; Carrat, Fabrice 1 ; Ancel, Pierre-Yves 7 ; Charles, Marie-Aline 7 ; Kab, Sofiane 8 ; Renuy, Adeline 8 ; Le-Got, Stephane 8 ; Ribet, Celine 8 ; Pellicer, Mireille 8 ; Wiernik, Emmanuel 8 ; Goldberg, Marcel 8 ; Artaud, Fanny 9 ; Gerbouin-Rérolle, Pascale 9 ; Enguix, Mélody 9 ; Laplanche, Camille 9 ; Gomes-Rima, Roselyn 9 ; Hoang, Lyan 9 ; Correia, Emmanuelle 9 ; Barry, Alpha Amadou 9 ; Senina, Nadège 9 ; Allegre, Julien 5 ; Szabo de Edelenyi, Fabien 5 ; Druesne-Pecollo, Nathalie 5 ; Esseddik, Younes 5 ; Hercberg, Serge 5 ; Deschasaux, Mélanie 5 ; Benhammou, Valérie 10 ; Ritmi, Anass 11 ; Marchand, Laetitia 11 ; Zaros, Cecile 11 ; Lordmi, Elodie 11 ; Candea, Adriana 11 ; de Visme, Sophie 11 ; Simeon, Thierry 11 ; Thierry, Xavier 11 ; Geay, Bertrand 11 ; Dufourg, Marie-Noelle 11 ; Milcent, Karen 11 ; Rahib, Delphine 12 ; Lydie, Nathalie 12 ; Lusivika-Nzinga, Clovis 13 ; Pannetier, Gregory 13 ; Lapidus, Nathanael 1 ; Goderel, Isabelle 13 ; Dorival, Céline 13 ; Nicol, Jérôme 13 ; Robineau, Olivier 13 ; Lai, Cindy 14 ; Belhadji, Liza 14 ; Esperou, Hélène 14 ; Couffin-Cadiergues, Sandrine 14 ; Gagliolo, Jean-Marie 15 ; Blanché, Hélène 6 ; Sébaoun, Jean-Marc 6 ; Beaudoin, Jean-Christophe 6 ; Gressin, Laetitia 6 ; Morel, Valérie 6 ; Ouili, Ouissam 6 ; Ninove, Laetitia 2 ; Priet, Stéphane 2 ; Villarroel, Paola Mariela Saba 2 ; Fourié, Toscane 2 ; Ali, Souand Mohamed 2 ; Amroun, Abdenour 2 ; Seston, Morgan 2 ; Ayhan, Nazli 2 ; Pastorino, Boris 2 ; Lapidus, Nathanaël 1 

 Inserm, Institut Pierre-Louis d’épidémiologie et de santé publique, Sorbonne Université, Paris, France (GRID:grid.7429.8) (ISNI:0000000121866389); AP-HP. Sorbonne Université, Département de santé publique, Hôpital Saint-Antoine, Paris, France (GRID:grid.412370.3) (ISNI:0000 0004 1937 1100) 
 Aix Marseille Univ, Unité des Virus Émergents, UVE, IRD 190, INSERM 1207, IHU Méditerranée Infection, Marseille, France (GRID:grid.5399.6) (ISNI:0000 0001 2176 4817) 
 Paris University, Paris, France (GRID:grid.462420.6); UVSQ, Inserm UMS 11, Université Paris-Saclay, Université de Paris, Villejuif, France (GRID:grid.12832.3a) (ISNI:0000 0001 2323 0229) 
 UVSQ, Inserm, Gustave Roussy, CESP UMR1018, Université Paris-Saclay, Villejuif, France (GRID:grid.14925.3b) (ISNI:0000 0001 2284 9388); University of Florence, Department of Statistics, Computer Science and Applications, Florence, Italy (GRID:grid.8404.8) (ISNI:0000 0004 1757 2304) 
 University of Paris (CRESS), Sorbonne Paris Nord University, Inserm U1153, Inrae U1125, Cnam, Nutritional Epidemiology Research Team (EREN), Epidemiology and Statistics Research Center, Bobigny, France (GRID:grid.508487.6) (ISNI:0000 0004 7885 7602) 
 CEPH-Biobank, Fondation Jean Dausset-CEPH (Centre d’Etude du Polymorphisme Humain), Paris, France (GRID:grid.417836.f) (ISNI:0000 0004 0639 125X) 
 Université de Paris, Centre for Research in Epidemiology and StatisticS (CRESS), Inserm, INRAE, Paris, France (GRID:grid.508487.6) (ISNI:0000 0004 7885 7602) 
 UVSQ, Inserm UMS 11, Université Paris-Saclay, Université de Paris, Villejuif, France (GRID:grid.12832.3a) (ISNI:0000 0001 2323 0229) 
 UVSQ, Inserm, Gustave Roussy, CESP UMR1018, Université Paris-Saclay, Villejuif, France (GRID:grid.14925.3b) (ISNI:0000 0001 2284 9388) 
10  EPIPAGE-2 Joint Unit, Paris, France (GRID:grid.508487.6) 
11  ELFE Joint Unit, Paris, France (GRID:grid.508487.6) 
12  Santé Publique France, Paris, France (GRID:grid.493975.5) (ISNI:0000 0004 5948 8741) 
13  Inserm, Institut Pierre-Louis d’épidémiologie et de santé publique, Sorbonne Université, Paris, France (GRID:grid.7429.8) (ISNI:0000000121866389) 
14  Inserm, Paris, France (GRID:grid.7429.8) (ISNI:0000 0001 2186 6389) 
15  Aviesan, Inserm, Paris, France (GRID:grid.7429.8) (ISNI:0000 0001 2186 6389) 
Pages
9503
Publication year
2024
Publication date
2024
Publisher
Nature Publishing Group
e-ISSN
20452322
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3046139298
Copyright
© The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.