Full Text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This study used a novel combination of cellulose nanocrystals (CNCs) and calcium oxide (CaO) nanocomposite (CaO/CNCs) for the production of biodiesel from waste cooking oil. The filter paper was used as a raw cellulose source to produce the CNCs from the acid hydrolysis of cellulose with sulfuric acid. The as-synthesized CaO/CNC nanocomposite is recyclable and environmentally friendly and was characterized using Fourier transform infrared spectroscopy, energy dispersive X-ray, scanning electron microscopy, and X-ray diffraction. The optimum process parameters investigated are a 20:1 methanol-to-oil molar ratio, 3-weight percent catalyst concentration, 60 °C temperature, and 90 min of reaction time. Under the optimum conditions, a biodiesel yield of 84% was obtained. The CaO/CNC nanocomposite achieved five times reusability, indicating its effectiveness and reusability in the transesterification reaction. The synthesized biodiesel chemical composition was examined using FTIR, GCMS, 1H-NMR, and 13C-NMR, and its properties, including specific gravity, color, flash point, cloud point, pour point, viscosity, sulfur content, sediments, water content, total acid number, cetane number, and corrosion test, were ascertained using ASTM standard practices. The outcomes were determined to fulfill global biodiesel standards (ASTM 951, 6751). Five successive transesterification processes were used to test the regeneration of the catalyst; the first three showed no distinct change, while the fifth cycle showed a reduction of up to 79%. The innovative composite CaO/CNC and used cooking oil are stable, affordable, and extremely successful for long-term biodiesel generation.

Details

Title
A Green Nanocatalyst for Fatty Acid Methyl Ester Conversion from Waste Cooking Oil
Author
Khosa, Sadaf 1 ; Rani, Madeeha 1 ; Saeed, Muhammad 2 ; Syed Danish Ali 3 ; Alhodaib, Aiyeshah 4   VIAFID ORCID Logo  ; Waseem, Amir 1   VIAFID ORCID Logo 

 Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan 
 School of Chemistry, University of the Punjab, Lahore 54590, Pakistan 
 Nanoscience and Technology Department, National Centre for Physics, Islamabad 44000, Pakistan 
 Department of Physics, College of Science, Qassim University, Buraydah 51452, Saudi Arabia 
First page
244
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
20734344
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3046677321
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.