Content area

Abstract

Morphological features of the Mediterranean Sea basin have recently been precursors to a significant increase in the formation of extreme events, in relation to climate change effects. It happens very frequently that rotating air masses and the formation of mesoscale vortices can evolve into events with characteristics similar to large-scale tropical cyclones. Generally, they are less intense, with smaller size and duration; thus, they are called Medicanes, a short name for Mediterranean hurricanes, or tropical-like cyclones (TLCs). In this paper, we propose a new perspective for the study and analysis of cyclonic events, starting with data and images acquired from satellites and focusing on the diagnostics of the evolution of atmospheric parameters for these events. More precisely, satellite remote sensing techniques are employed to elaborate on different high spatial-resolution satellite images of the events at a given sensing time. Two case studies are examined, taking into account their development into Medicane stages: Ianos, which intensified in the Ionian Sea and reached the coast of Greece between 14 and 21 September 2020, and Apollo, which impacted Mediterranean latitudes with a long tracking from 24 October to 2 November 2021. For these events, 20 images were acquired from two different satellite sensors, onboard two low-Earth orbit (LEO) platforms, by deeply exploiting their thermal infrared (TIR) spectral channels. A useful extraction of significant physical information was carried out from every image, highlighting several atmospheric quantities, including temperature and altitude layers from the top of the cloud, vertical temperature gradient, atmospheric pressure field, and deep convection cloud. The diagnostics of the two events were investigated through the spatial scale capabilities of the instruments and the spatiotemporal evolution of the cyclones, including the comparison between satellite data and recording data from the BOLAM forecasting model. In addition, 384 images were extracted from the geostationary (GEO) satellite platform for the investigation of the events’ one-day structure intensification, by implementing time as the third dimension.

Details

1009240
Location
Title
A Satellite Analysis: Comparing Two Medicanes
Publication title
Atmosphere; Basel
Volume
15
Issue
4
First page
481
Publication year
2024
Publication date
2024
Publisher
MDPI AG
Place of publication
Basel
Country of publication
Switzerland
Publication subject
e-ISSN
20734433
Source type
Scholarly Journal
Language of publication
English
Document type
Journal Article
Publication history
 
 
Online publication date
2024-04-12
Milestone dates
2024-02-29 (Received); 2024-04-09 (Accepted)
Publication history
 
 
   First posting date
12 Apr 2024
ProQuest document ID
3046677324
Document URL
https://www.proquest.com/scholarly-journals/satellite-analysis-comparing-two-medicanes/docview/3046677324/se-2?accountid=208611
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2025-04-29
Database
ProQuest One Academic