Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Organ segmentation from CT images is critical in the early diagnosis of diseases, progress monitoring, pre-operative planning, radiation therapy planning, and CT dose estimation. However, data limitation remains one of the main challenges in medical image segmentation tasks. This challenge is particularly huge in pediatric CT segmentation due to children’s heightened sensitivity to radiation. In order to address this issue, we propose a novel segmentation framework with a built-in auxiliary classifier generative adversarial network (ACGAN) that conditions age, simultaneously generating additional features during training. The proposed conditional feature generation segmentation network (CFG-SegNet) was trained on a single loss function and used 2.5D segmentation batches. Our experiment was performed on a dataset with 359 subjects (180 male and 179 female) aged from 5 days to 16 years and a mean age of 7 years. CFG-SegNet achieved an average segmentation accuracy of 0.681 dice similarity coefficient (DSC) on the prostate, 0.619 DSC on the uterus, 0.912 DSC on the liver, and 0.832 DSC on the heart with four-fold cross-validation. We compared the segmentation accuracy of our proposed method with previously published U-Net results, and our network improved the segmentation accuracy by 2.7%, 2.6%, 2.8%, and 3.4% for the prostate, uterus, liver, and heart, respectively. The results indicate that our high-performing segmentation framework can more precisely segment organs when limited training images are available.

Details

Title
Age Encoded Adversarial Learning for Pediatric CT Segmentation
Author
Saba Heidari Gheshlaghi 1 ; Chi Nok Enoch Kan 2 ; Taly Gilat Schmidt 3 ; Ye, Dong Hye 4   VIAFID ORCID Logo 

 Department of Computer Science, Marquette University, Milwaukee, WI 53233, USA 
 Department of Electrical and Computer Engineering, Marquette University, Milwaukee, WI 53233, USA; [email protected] 
 Department of Biomedical Engineering, Marquette University and Medical College of Wisconsin, Milwaukee, WI 53233, USA; [email protected] 
 Department of Computer Science, Georgia State University, Atlanta, GA 30303, USA 
First page
319
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
23065354
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3046721810
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.