Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Fe-Mn-Cr-Ni alloys like Citomangan, delivered in the form of powders, tubular wires, and coated electrodes, are intended for welding deposition operations to create wear-resistant layers. Their main characteristic is their high capacity for surface mechanical work-hardening under high shock loads, along with high toughness and wear resistance. In order to increase the resistance to cavitation erosion, hardfacing of Duplex stainless steel X2CrNiMoN22-5-3 with Citomangan alloy was performed using a new welding technique, namely one that uses a universal TIG source adapted for manual welding with a coated electrode in pulsed current. Cavitation tests were conducted in accordance with the requirements of ASTM G32—2016 standard. Comparing the characteristic cavitation erosion parameters of the manganese austenitic layer, deposited by this new welding technique, with those of the reference steel, highlights an 8–11 times increase in its resistance to cavitation erosion. Metallographic investigations by optical microscopy and scanning electron microscopy (SEM), as well as hardness measurements, were carried out to understand the cavitation phenomena.

Details

Title
Cavitation Erosion of the Austenitic Manganese Layers Deposited by Pulsed Current Electric Arc Welding on Duplex Stainless Steel Substrates
Author
Mitelea, Ion 1 ; Mutașcu, Daniel 1 ; Ion-Dragoș Uțu 1   VIAFID ORCID Logo  ; Crăciunescu, Corneliu Marius 1   VIAFID ORCID Logo  ; Bordeașu, Ilare 2 

 Department of Materials and Fabrication Engineering, Politehnica University Timisoara, Bulevardul Mihai Viteazul nr.1, 300222 Timișoara, Romania; [email protected] (I.M.); [email protected] (D.M.); [email protected] (I.-D.U.); [email protected] (C.M.C.) 
 Department of Mechanical Machines, Equipment and Transports, Politehnica University Timisoara, Bulevardul Mihai Viteazul nr.1, 300222 Timisoara, Romania 
First page
315
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
20734352
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3046750078
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.