Full Text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The development of deep learning greatly promotes the progress of speaker verification (SV). Studies show that both convolutional neural networks (CNNs) and dilated time-delay neural networks (TDNNs) achieve advanced performance in text-independent SV, due to their ability to sufficiently extract the local feature and the temporal contextual information, respectively. Also, the combination of the above two has achieved better results. However, we found a serious gridding effect when we apply the 1D-Res2Net-based dilated TDNN proposed in ECAPA-TDNN for SV, which indicates discontinuity and local information losses of frame-level features. To achieve high-resolution process for speaker embedding, we improve the CNN–TDNN structure with proposed repeated multi-scale feature fusions. Through the proposed structure, we can effectively improve the channel utilization of TDNN and achieve higher performance under the same TDNN channel. And, unlike previous studies that have all converted CNN features to TDNN features directly, we also studied the latent space transformation between CNN and TDNN to achieve efficient conversion. Our best method obtains 0.72 EER and 0.0672 MinDCF on VoxCeleb-O test set, and the proposed method performs better in cross-domain SV without additional parameters and computational complexity.

Details

Title
Improved Convolutional Neural Network–Time-Delay Neural Network Structure with Repeated Feature Fusions for Speaker Verification
Author
Gao, Miaomiao 1   VIAFID ORCID Logo  ; Zhang, Xiaojuan 2 

 Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China; Key Laboratory of Electromagnetic Radiation and Sensing Technology, Chinese Academy of Sciences, Beijing 100190, China; School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China 
 Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China; Key Laboratory of Electromagnetic Radiation and Sensing Technology, Chinese Academy of Sciences, Beijing 100190, China 
First page
3471
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3046772381
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.