Content area

Abstract

Let K be a quadratic imaginary number field, let [special characters omitted] the top of its p-class field tower for p an odd prime, and let G = Gal([special characters omitted]/K). It is known, due to a tremendous collection of work ranging from the principal results of class field theory to the famous Golod-Shafarevich inequality, that G is finite if the p-rank of the class group of K is 0 or 1, and is infinite if this rank is at least 3. This leaves the rank 2 case as the only remaining unsolved case. In this case, while finiteness is still a mystery, much is still known about G: It is a 2-generated, 2-related pro-p-group equipped with an involution that acts as the inverse modulo commutators, and is of one of three possible Zassenhaus types (defined in the paper). If such a group is finite, we will call it an interesting p-tower group. We further the knowledge on such groups by showing that one particular Zassenhaus type can occur as an interesting p-tower group only if the group has order at least p 24 (Proposition 8.1), and by proving a succinct cohomological condition (Proposition 4.7) for a p-tower group to be infinite. More generally, we prove a Golod-Shafarevich equality (Theorem 5.2), refining the famous Golod-Shafarevich inequality, and obtaining as a corollary a strict strengthening of previous Golod-Shafarevich inequalities (Corollary 5.5). Of interest is that this equality applies not only to finite p-groups but also to p-adic analytic pro- p-groups, a class of groups of particular relevance due to their prominent appearance in the Fontaine-Mazur conjecture. This refined version admits as a consequence that the sizes of the first few modular dimension subgroups of an interesting p-tower group G are completely determined by p and its Zassenhaus type, and we compute these sizes. As another application, we prove a new formula (Corollary 5.3) for the [special characters omitted]-dimensions of the successive quotients of dimension subgroups of free pro-p-groups.

Details

Title
A Golod -Shafarevich equality and p-tower groups
Author
McLeman, Cameron W.
Year
2008
Publisher
ProQuest Dissertations & Theses
ISBN
978-0-549-52281-2
Source type
Dissertation or Thesis
Language of publication
English
ProQuest document ID
304685257
Copyright
Database copyright ProQuest LLC; ProQuest does not claim copyright in the individual underlying works.