Full Text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

A series of novel zinc-salophen (salophen = N, N′-phenylenebis(salicylimine)) complexes (Zn-1–4) with electron donor–acceptor (D–A) structure were synthesized and characterized using a triphenylamine structure as the electron donor. Zn-salophen complexes with the same substituent sites have been reported to exhibit significant CT properties. The design of the D–A structure and the increase in the number of benzene rings to increase the length of bridging groups have led to a reduction in the energy difference between charge separation singlet and triplet states, resulting in the production of reactive oxygen species (ROS) under light irradiation. The ability has been enhanced (in terms of the production of singlet oxygen (1O2), compared with Zn-salophen, Zn-4 is 1.58 times higher). This method has been reported to enhance the intersystem crossing process of compounds, thereby enabling them to reach a triple excited state, but the generation of ROS has not been studied. Although the enhancement is not very significant, it has expanded the medical application prospects of these types of complexes and has provided a new strategy to enhance the production of ROS.

Details

Title
Synthesis and Characterization of Zn-Salophen Complexes with Different D–A Distances: An Approach to Tuning the Intersystem-Crossing Process
Author
Ze-Hao Li 1 ; Zi-Yi Tang 2 ; Zhang, Jing 1 ; Jun-Long, Zhang 2   VIAFID ORCID Logo 

 College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China; [email protected] 
 Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; [email protected] 
First page
108
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
23046740
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3046935583
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.