Full Text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The blending of polyolefins (POs), such as polyethylene (PE) and polypropylene (PP), is a growing area of research, particularly for recycling mixed polyolefin (MPO) waste through flotation sorting techniques. However, understanding the thermomechanical behavior of these recycled blends is challenging due to limitations in the existing characterization methods. This paper introduces a combined experimental and numerical method to accurately assess the complex mechanical behavior of high-density PE, PP, and their blends. We conducted detailed thermomechanical analyses using a high-speed stereo digital image correlation (DIC) system paired with an infrared camera to capture temperature variations alongside mechanical stress and strain. This approach allowed us to correct for distortions caused by necking and to derive accurate stress–strain relationships. We also applied a cutting-edge unified semi-crystalline polymer (USCP) model to simplify the analysis, focusing on the effects of strain rate and temperature, including self-heating and thermal softening phenomena. Our results, which closely match experimental observations of stress–strain behavior and temperature changes, offer new insights into the thermomechanical properties of PO blends, which are essential for advancing their practical applications in various fields.

Details

Title
Advancing the Characterization of Recycled Polyolefin Blends with a Combined Experimental and Numerical Approach to Thermomechanical Behavior
Author
Pei Hao 1   VIAFID ORCID Logo  ; Siebers, Charmayne 2   VIAFID ORCID Logo  ; Kim Ragaert 2   VIAFID ORCID Logo  ; Gilabert, Francisco A 1   VIAFID ORCID Logo 

 Department of Materials, Textiles and Chemical Engineering (MaTCh), Mechanics of Materials and Structures (MMS), Tech Lane Ghent Science Park-Campus A, Ghent University (UGent), Technologiepark-Zwijnaarde 46, 9052 Ghent, Belgium; [email protected] 
 Circular Plastics, Department of Circular Chemical Engineering, Faculty of Science and Engineering, Maastricht University, Urmonderbaan 22, 6167 RD Geleen, The Netherlands; [email protected] (C.S.); [email protected] (K.R.) 
First page
1153
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
20734360
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3047037580
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.