Full Text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In China, a large amount of the total energy consumption is made up of building energy, particularly in humid regions. The conventional vapor compression refrigeration systems cannot effectively control the indoor humid and thermal environment. Therefore, this article proposes a solar-powered desiccant wheel and ground-source heat pump (SDW-GSHP) air conditioning system. The energy consumption of the system is mainly from sustainable sources of solar and geothermal energy, showcasing excellent energy efficiency and environmental friendliness. The desiccant wheel (DW) processes latent heat loads, and the GSHP processes the sensible heat load. The regeneration air of the DW is heated by a solar collector. The operational performance of the system was simulated by using TRNSYS during the typical summer week (15 July to 22 July) in Qingdao. The simulation results indicated that indoor temperature was maintained within 25.8–26.2 °C and the relative humidity was maintained in the range of 57–61%. The COP of the SDW-GSHP air conditioning system was 42.1% higher than that of the DW air conditioning system with electric heating regeneration, and electricity saved 43.7%.

Details

Title
Simulation Study on Performance of Solar-Powered Desiccant Wheel and Ground Source Heat Pump Air Conditioning in Qingdao
Author
Wu, Yicheng; Hou, Litong; Su, Tianxi; Ma, Yongzhi
First page
3105
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
20711050
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3047079349
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.