It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
We consider the finite two-dimensional Ising model on a lattice with periodic boundary conditions. Kaufman determined the spectrum of the transfer matrix on the finite, periodic lattice, and her derivation was a simplification of Onsager's famous result on solving the two-dimensional Ising model. We derive and rework Kaufman's results by applying representation theory, which give us a more direct approach to compute the spectrum of the transfer matrix. We determine formulas for the spin correlation function that depend on the matrix elements of the induced rotation associated with the spin operator. The representation of the spin matrix elements is obtained by considering the spin operator as an intertwining map. We wrap the lattice around the cylinder taking the semi-infinite volume limit. We control the scaling limit of the multi-spin Ising correlations on the cylinder as the temperature approaches the critical temperature from below in terms of a Bugrij-Lisovyy conjecture for the spin matrix elements on the finite, periodic lattice. Finally, we compute the matrix representation of the spin operator for temperatures below the critical temperature in the infinitevolume limit in the pure state defined by plus boundary conditions.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer