It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Nuclear rings at the centers of barred galaxies are active in star formation. To understand what determines the star formation rate (SFR) and structure of nuclear rings, we conduct semi-global, magnetohydrodynamic simulations of nuclear rings subject to various mass inflow rates with and without magnetic fields. We adopt the TIGRESS framework of Kim & Ostriker to handle radiative heating and cooling, star formation, and related supernova feedback. Our findings suggest that supernova feedback cannot destroy the nuclear ring completely or halt star formation within it, while both the mass inflow rate and supernova feedback affect the ring star formation rate. The supernova feedback is responsible for small-amplitude SFR fluctuations with a timescale of less than 40 million years, while the SFR variations over longer timescales are due to changes in the mass inflow rates. Magnetic fields seeded by the inflows are amplified in the ring due to rotational shear and supernova feedback, greatly reducing the SFR at late times. Strong magnetic tension in the ring drives radially inward accretion flows from the ring to form a circumnuclear disk in the central region, which is absent in the unmagnetized model.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Department of Physics & Astronomy, Seoul National University , Seoul 08826 , Republic of Korea; SNU Astronomy Research Center, Seoul National University , Seoul 08826 , Republic of Korea
2 Department of Astrophysical Sciences, Princeton University , Princeton, NJ 08544 , USA