Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This study assesses the applicability of different-resolution multispectral remote sensing images for mapping and estimating the aboveground biomass (AGB) of Carpobrotus edulis, a prominent invasive species in European coastal areas. This study was carried out on the Cávado estuary sand spit (Portugal). The performance of three sets of multispectral images with different Ground Sample Distances (GSDs) were compared: 2.5 cm, 5 cm, and 10 cm. The images were classified using the supervised classification algorithm random forest and later improved by applying a sieve filter. Samples of C. edulis were also collected, dried, and weighed to estimate the AGB using the relationship between the dry weight (DW) and vegetation indices (VIs). The resulting regression models were evaluated based on their coefficient of determination (R2), Normalised Root Mean Square Error (NRMSE), p-value, Akaike information criterion (AIC), and the Bayesian information criterion (BIC). The results show that the three tested image resolutions allow for constructing reliable coverage maps of C. edulis, with overall accuracy values of 89%, 85%, and 88% for the classification of the 2.5 cm, 5 cm, and 10 cm GSD images, respectively. The best-performing VI-DW regression models achieved R2 = 0.87 and NRMSE = 0.09 for the 2.5 cm resolution; R2 = 0.77 and NRMSE = 0.12 for the 5 cm resolution; and R2 = 0.64 and NRMSE = 0.15 for the 10 cm resolution. The C. edulis area and total AGB were 3441.10 m2 and 28,327.1 kg (with an AGB relative error (RE) = 0.08) for the 2.5 cm resolution; 3070.04 m2 and 29,170.8 kg (AGB RE = 0.08) for the 5 cm resolution; and 2305.06 m2 and 22,135.7 kg (AGB RE = 0.11) for the 10 cm resolution. Spatial and model differences were analysed in detail to determine their causes. Final analyses suggest that multispectral imagery of up to 5 cm GSD is adequate for estimating C. edulis distribution and biomass.

Details

Title
Using Remote Sensing Multispectral Imagery for Invasive Species Quantification: The Effect of Image Resolution on Area and Biomass Estimation
Author
de Figueiredo Meyer, Manuel 1 ; Gonçalves, José Alberto 2   VIAFID ORCID Logo  ; Ferreira Bio, Ana Maria 1   VIAFID ORCID Logo 

 Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, 4099-002 Porto, Portugal; [email protected] (M.d.F.M.); [email protected] (J.A.G.) 
 Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, 4099-002 Porto, Portugal; [email protected] (M.d.F.M.); [email protected] (J.A.G.); Department of Geosciences Environment and Spatial Planning, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal 
First page
652
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3048722600
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.