Content area

Abstract

Nonlinear mixed effects models provide a flexible and powerful platform for the analysis of clustered data that arise in numerous fields, such as pharmacology, biology, agriculture, forestry, and economics. This dissertation focuses on fitting parametric nonlinear mixed effects models with single- and multi-level random effects. A new, efficient, and accurate method that gives an error of order O(1/n 2), fully exponential Laplace approximation EM algorithm (FELA-EM), for obtaining restricted maximum likelihood (REML) estimates in nonlinear mixed effects models is developed. Sample codes for implementing FELA-EM algorithm in R are given. Simulation studies have been conducted to evaluate the accuracy of the new approach and compare it with the Laplace approximation as well as four different linearization methods for fitting nonlinear mixed effects models with single-level and two-crossed-level random effects. Of all approximations considered in the thesis, FELA-EM algorithm is the only one that gives unbiased or close-to-unbiased (%Bias < 1%) estimates for both the fixed effects and variance-covariance parameters. Finally, FELA-EM algorithm is applied to a real dataset to model feeding pigs’ body temperature and a unified strategy for building crossed and nested nonlinear mixed effects models with treatments and covariates is provided.

Details

Title
Fully exponential Laplace approximation EM algorithm for nonlinear mixed effects models
Author
Zhou, Meijian
Year
2009
Publisher
ProQuest Dissertations Publishing
ISBN
978-1-109-52198-6
Source type
Dissertation or Thesis
Language of publication
English
ProQuest document ID
304940515
Copyright
Database copyright ProQuest LLC; ProQuest does not claim copyright in the individual underlying works.