Full Text

Turn on search term navigation

© 2024. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Emissions of anthropogenic aerosol and their precursors are often prescribed in global aerosol models. Most of these emissions are spatially heterogeneous at model grid scales. When remapped from low-resolution data, the spatial heterogeneity in emissions can be lost, leading to large errors in the simulation. It can also cause the conservation problem if non-conservative remapping is used. The default anthropogenic emission treatment in the Energy Exascale Earth System Model (E3SM) is subject to both problems. In this study, we introduce a revised emission treatment for the E3SM Atmosphere Model (EAM) that ensures conservation of mass fluxes and preserves the original emission heterogeneity at the model-resolved grid scale. We assess the error estimates associated with the default emission treatment and the impact of improved heterogeneity and mass conservation in both globally uniform standard-resolution ( 165 km) and regionally refined high-resolution ( 42 km) simulations. The default treatment incurs significant errors near the surface, particularly over sharp emission gradient zones. Much larger errors are observed in high-resolution simulations. It substantially underestimates the aerosol burden, surface concentration, and aerosol sources over highly polluted regions, while it overestimates these quantities over less-polluted adjacent areas. Large errors can persist at higher elevation for daily mean estimates, which can affect aerosol extinction profiles and aerosol optical depth (AOD). We find that the revised treatment significantly improves the accuracy of the aerosol emissions from surface and elevated sources near sharp spatial gradient regions, with significant improvement in the spatial heterogeneity and variability of simulated surface concentration in high-resolution simulations. In the next-generation E3SM running at convection-permitting scales where the resolved spatial heterogeneity is significantly increased, the revised emission treatment is expected to better represent the aerosol emissions as well as their lifecycle and impacts on climate.

Details

Title
Impacts of spatial heterogeneity of anthropogenic aerosol emissions in a regionally refined global aerosol–climate model
Author
Hassan, Taufiq 1   VIAFID ORCID Logo  ; Zhang, Kai 1   VIAFID ORCID Logo  ; Li, Jianfeng 1   VIAFID ORCID Logo  ; Singh, Balwinder 1 ; Zhang, Shixuan 1   VIAFID ORCID Logo  ; Wang, Hailong 1   VIAFID ORCID Logo  ; Po-Lun Ma 1   VIAFID ORCID Logo 

 Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, WA, USA 
Pages
3507-3532
Publication year
2024
Publication date
2024
Publisher
Copernicus GmbH
ISSN
1991962X
e-ISSN
19919603
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3049649880
Copyright
© 2024. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.