Load-bearing across diarthrodial joints with special reference to peripheral structures and the menisci of the knee

Adeeb, Samer M. 
 University of Calgary (Canada) ProQuest Dissertations Publishing,  2005. NR04582.

Abstract (summary)

Finite element models of the articulating surfaces of diarthrodial joints have typically depicted the joints as having a “Hertzian” type of contact, having a round convex surface sitting on a flat or concave surface with a higher radius of curvature. However, careful investigation of the major diarthrodial joints in the human body reveals that the mechanism of load bearing in these joints is different. Contact starts at the periphery of the joint at the site of an accessory peripheral circumferential structure and the contact area extends inwards as more load is applied. Finite element modelling of typical diarthrodial joints was performed and the new mechanism of load bearing was shown to be more efficient in reducing the matrix stresses and the fluid flow inside the articulating surfaces. The accessory peripheral circumferential structures act to confine the joint and to reduce the matrix fluid-flow-induced stresses.

The meniscus of the knee joint is the largest of the peripheral circumferential structures. The structure of the meniscus is unique as it varies from the inner part to the outer peripheral part. The finite element models presented here are the first to show that this variation in the physical structure matches the variation in the stress states inside the different zones of the meniscus. The cartilage-like inner zone of the meniscus is under a stress state that is similar to that in the cartilage layers, high compressive stress and high fluid pressures. The ligament-like outer zone of the meniscus is subjected to high circumferential stresses aligned with the circumferential fibres. The very low shear properties of the meniscus allow it to deform and take the shape of the space between the two articulating surfaces without overstressing the articular cartilage layers. Due to the high flexibility of the meniscus and under certain loading configurations, however, a tear can develop inside the meniscus. Surgeons now tend to preserve as much as they can of these important tissues. The criteria of a successful repair mechanism are discussed based on the structure and the mechanical behaviour of the meniscus. The available repair techniques are compared and new repair techniques are presented.

Indexing (details)

Biomedical research;
0541: Biomedical engineering
0786: Biophysics
Identifier / keyword
Applied sciences; Biological sciences; Diarthrodial joints; Knee; Load-bearing; Menisci
Load-bearing across diarthrodial joints with special reference to peripheral structures and the menisci of the knee
Adeeb, Samer M.
Number of pages
Degree date
School code
DAI-B 66/07, Dissertation Abstracts International
Place of publication
Ann Arbor
Country of publication
United States
University of Calgary (Canada)
University location
Source type
Dissertation or Thesis
Document type
Dissertation/thesis number
ProQuest document ID
Database copyright ProQuest LLC; ProQuest does not claim copyright in the individual underlying works.
Document URL