It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The verified text data of wheat varieties is an important component of wheat germplasm information. To automatically obtain a structured description of the phenotypic and genetic characteristics of wheat varieties, the aim at solve the issues of fuzzy entity boundaries and overlapping relationships in unstructured wheat variety approval data, WGIE-DCWF (joint extraction model of wheat germplasm information entity relationship based on deep character and word fusion) was proposed. The encoding layer of the model deeply fused word semantic information and character information using the Transformer encoder of BERT. This allowed for the cascading fusion of contextual semantic feature information to achieve rich character vector representation and improve the recognition ability of entity features. The triple extraction layer of the model established a cascading pointer network, extracted the head entity, extracted the tail entity according to the relationship category, and decoded the output triplet. This approach improved the model’s capability to extract overlapping relationships. The experimental results demonstrated that the WGIE-DCWF model performed exceptionally well on both the WGD (wheat germplasm dataset) and the public dataset DuIE. The WGIE-DCWF model not only achieved high performance on the evaluation datasets but also demonstrated good generalization. This provided valuable technical support for the construction of a wheat germplasm information knowledge base and is of great significance for wheat breeding, genetic research, cultivation management, and agricultural production.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Henan Agriculture University, College of Information and Management Sciences, Zhengzhou, China (GRID:grid.108266.b) (ISNI:0000 0004 1803 0494)
2 Henan Agriculture University, College of Information and Management Sciences, Zhengzhou, China (GRID:grid.108266.b) (ISNI:0000 0004 1803 0494); Henan Engineering Laboratory of Farmland Environmental Monitoring and Control, Zhengzhou, China (GRID:grid.108266.b)
3 University of London, London, UK (GRID:grid.4464.2) (ISNI:0000 0001 2161 2573)