Content area

Abstract

Quantum computers are believed to bring computational advantages in simulating quantum many body systems. However, recent works have shown that classical machine learning algorithms are able to predict numerous properties of quantum systems with classical data. Despite various examples of learning tasks with provable quantum advantages being proposed, they all involve cryptographic functions and do not represent any physical scenarios encountered in laboratory settings. In this paper we prove quantum advantages for the physically relevant task of learning quantum observables from classical (measured out) data. We consider two types of observables: first we prove a learning advantage for linear combinations of Pauli strings, then we extend the result for a broader case of unitarily parametrized observables. For each type of observable we delineate the boundaries that separate physically relevant tasks which classical computers can solve using data from quantum measurements, from those where a quantum computer is still necessary for data analysis. Differently from previous works, we base our classical hardness results on the weaker assumption that \(\mathsf{BQP}\) hard processes cannot be simulated by polynomial-size classical circuits and provide a non-trivial quantum learning algorithm. Our results shed light on the utility of quantum computers for machine learning problems in the domain of quantum many body physics, thereby suggesting new directions where quantum learning improvements may emerge.

Details

1009240
Business indexing term
Title
Exponential quantum advantages in learning quantum observables from classical data
Publication title
arXiv.org; Ithaca
Publication year
2024
Publication date
Dec 20, 2024
Section
Quantum Physics
Publisher
Cornell University Library, arXiv.org
Source
arXiv.org
Place of publication
Ithaca
Country of publication
United States
University/institution
Cornell University Library arXiv.org
e-ISSN
2331-8422
Source type
Working Paper
Language of publication
English
Document type
Working Paper
Publication history
 
 
Online publication date
2024-12-23
Milestone dates
2024-05-03 (Submission v1); 2024-12-20 (Submission v2)
Publication history
 
 
   First posting date
23 Dec 2024
ProQuest document ID
3051511455
Document URL
https://www.proquest.com/working-papers/exponential-quantum-advantages-learning/docview/3051511455/se-2?accountid=208611
Full text outside of ProQuest
Copyright
© 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2024-12-24
Database
ProQuest One Academic