Full text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The European Union is planning to introduce a new tool for evaluating smart solutions in buildings—the Smart Readiness Indicator (SRI). As 54 energy efficiency categories must be evaluated, the triage process can be long and time-intensive. Altogether, 228 data points (or inputs) about the smartness of the buildings are required to complete the evaluation. The present paper proposes an alternative calculation method based on genetic programming (GP) for the calculation of Domains and linear regression (LR) for the calculation of Impact Factors and the total SRI score of the building. This novel calculation requires 20% (Domain ventilation and dynamic building envelope) to 75% (Domain cooling) fewer inputs than the original methodology. The present study evaluated 223 case study buildings, and 7 genetic programming models and 8 linear regression models were generated based on the results. The generated results are precise; the relative deviation from the experimental data for Domain scores (modelled with GP) ranged from 0.9% to 2.9%. The R2 for the LR models was 0.75 for most models (with two exceptions, with one with a value of 0.57 and the other with a value of 0.98). The developed method is scalable and could be used for preliminary and portfolio-level screening at early-stage assessments.

Details

Title
Developing an Alternative Calculation Method for the Smart Readiness Indicator Based on Genetic Programming and Linear Regression
Author
Beras Mitja 1 ; Brezočnik Miran 1 ; Uroš, Župerl 1 ; Kovačič Miha 2 

 Faculty of Mechanical Engineering, University of Maribor, 2000 Maribor, Slovenia; [email protected] (M.B.); [email protected] (U.Ž.) 
 Štore Steel d.o.o., Železarska cesta 3, 3220 Štore, Slovenia; [email protected], Faculty of Mechanical Engineering, University of Ljubljana, Aškerčeva cesta 6, 1000 Ljubljana, Slovenia, College of Industrial Engineering, Mariborska cesta 2, 3000 Celje, Slovenia 
First page
1675
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
20755309
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3211922132
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.