Full text

Turn on search term navigation

© The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Background

Artificial Intelligence(AI)-based solutions for Gleason grading hold promise for pathologists, while image quality inconsistency, continuous data integration needs, and limited generalizability hinder their adoption and scalability.

Methods

We present a comprehensive digital pathology workflow for AI-assisted Gleason grading. It incorporates A!MagQC (image quality control), A!HistoClouds (cloud-based annotation), Pathologist-AI Interaction (PAI) for continuous model improvement, Trained on Akoya-scanned images only, the model utilizes color augmentation and image appearance migration to address scanner variations. We evaluate it on Whole Slide Images (WSI) from another five scanners and conduct validations with pathologists to assess AI efficacy and PAI.

Results

Our model achieves an average F1 score of 0.80 on annotations and 0.71 Quadratic Weighted Kappa on WSIs for Akoya-scanned images. Applying our generalization solution increases the average F1 score for Gleason pattern detection from 0.73 to 0.88 on images from other scanners. The model accelerates Gleason scoring time by 43% while maintaining accuracy. Additionally, PAI improve annotation efficiency by 2.5 times and led to further improvements in model performance.

Conclusions

This pipeline represents a notable advancement in AI-assisted Gleason grading for improved consistency, accuracy, and efficiency. Unlike previous methods limited by scanner specificity, our model achieves outstanding performance across diverse scanners. This improvement paves the way for its seamless integration into clinical workflows.

Plain language summary

Gleason grading is a well-accepted diagnostic standard to assess the severity of prostate cancer in patients’ tissue samples, based on how abnormal the cells in their prostate tumor look under a microscope. This process can be complex and time-consuming. We explore how artificial intelligence (AI) can help pathologists perform Gleason grading more efficiently and consistently. We build an AI-based system which automatically checks image quality, standardizes the appearance of images from different equipment, learns from pathologists’ feedback, and constantly improves model performance. Testing shows that our approach achieves consistent results across different equipment and improves efficiency of the grading process. With further testing and implementation in the clinic, our approach could potentially improve prostate cancer diagnosis and management.

Details

Title
A comprehensive AI model development framework for consistent Gleason grading
Author
Huo, Xinmi 1   VIAFID ORCID Logo  ; Ong, Kok Haur 1   VIAFID ORCID Logo  ; Lau, Kah Weng 2 ; Gole, Laurent 3 ; Young, David M. 4 ; Tan, Char Loo 5   VIAFID ORCID Logo  ; Zhu, Xiaohui 6 ; Zhang, Chongchong 7 ; Zhang, Yonghui 7 ; Li, Longjie 1 ; Han, Hao 3   VIAFID ORCID Logo  ; Lu, Haoda 8 ; Zhang, Jing 9 ; Hou, Jun 10 ; Zhao, Huanfen 11 ; Gan, Hualei 12 ; Yin, Lijuan 13 ; Wang, Xingxing 10 ; Chen, Xiaoyue 11 ; Lv, Hong 12 ; Cao, Haotian 9 ; Yu, Xiaozhen 10 ; Shi, Yabin 11 ; Huang, Ziling 12 ; Marini, Gabriel 1 ; Xu, Jun 14   VIAFID ORCID Logo  ; Liu, Bingxian 15 ; Chen, Bingxian 15 ; Wang, Qiang 15 ; Gui, Kun 15 ; Shi, Wenzhao 16 ; Sun, Yingying 17 ; Chen, Wanyuan 18 ; Cao, Dalong 19 ; Sanders, Stephan J. 20   VIAFID ORCID Logo  ; Lee, Hwee Kuan 1 ; Hue, Susan Swee-Shan 2   VIAFID ORCID Logo  ; Yu, Weimiao 21   VIAFID ORCID Logo  ; Tan, Soo Yong 22   VIAFID ORCID Logo 

 A*STAR, Computational Digital Pathology Lab, Bioinformatics Institute, Singapore, Singapore (GRID:grid.418325.9) (ISNI:0000 0000 9351 8132) 
 A*STAR, Computational & Molecular Pathology Lab, Institute of Molecule and Cell Biology, Singapore, Singapore (GRID:grid.418812.6) (ISNI:0000 0004 0620 9243); National University Health System, Department of Pathology, National University Hospital, Singapore, Singapore (GRID:grid.410759.e) (ISNI:0000 0004 0451 6143) 
 A*STAR, Computational & Molecular Pathology Lab, Institute of Molecule and Cell Biology, Singapore, Singapore (GRID:grid.418812.6) (ISNI:0000 0004 0620 9243) 
 A*STAR, Computational & Molecular Pathology Lab, Institute of Molecule and Cell Biology, Singapore, Singapore (GRID:grid.418812.6) (ISNI:0000 0004 0620 9243); University of California, Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, San Francisco, USA (GRID:grid.266102.1) (ISNI:0000 0001 2297 6811) 
 National University Health System, Department of Pathology, National University Hospital, Singapore, Singapore (GRID:grid.410759.e) (ISNI:0000 0004 0451 6143) 
 Southern Medical University, Department of Pathology, Nanfang Hospital and Basic Medical College, Guangzhou, China (GRID:grid.284723.8) (ISNI:0000 0000 8877 7471); Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, China (GRID:grid.459579.3) 
 The 910 Hospital of PLA, Department of Pathology, QuanZhou, China (GRID:grid.459579.3) 
 A*STAR, Computational Digital Pathology Lab, Bioinformatics Institute, Singapore, Singapore (GRID:grid.418325.9) (ISNI:0000 0000 9351 8132); Nanjing University of Information Science and Technology (NUIST), Institute for AI in Medicine, School of Artificial Intelligence, Nanjing, China (GRID:grid.260478.f) (ISNI:0000 0000 9249 2313) 
 Shanghai Changzheng Hospital, Department of Pathology, Shanghai, China (GRID:grid.413810.f) 
10  Fudan University, Department of Pathology, Zhongshan Hospital, Shanghai, China (GRID:grid.8547.e) (ISNI:0000 0001 0125 2443) 
11  Hebei General Hospital, Department of Pathology, Shijiazhuang, China (GRID:grid.440208.a) (ISNI:0000 0004 1757 9805) 
12  Fudan University Shanghai Cancer Center, Department of Pathology, Shanghai, China (GRID:grid.452404.3) (ISNI:0000 0004 1808 0942) 
13  Changhai Hospital of Shanghai, Department of Pathology, Shanghai, China (GRID:grid.411525.6) (ISNI:0000 0004 0369 1599) 
14  Nanjing University of Information Science and Technology (NUIST), Institute for AI in Medicine, School of Artificial Intelligence, Nanjing, China (GRID:grid.260478.f) (ISNI:0000 0000 9249 2313) 
15  Ningbo KonFoong Bioinformation Tech Co. Ltd, Ningbo, China (GRID:grid.260478.f) 
16  Vishuo Biomedical Pte Ltd, Singapore, Singapore (GRID:grid.501200.6) 
17  Hangzhou Medical College, Cancer Center, Department of Pathology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou, China (GRID:grid.506977.a) (ISNI:0000 0004 1757 7957) 
18  Hangzhou Medical College, Cancer Center, Department of Pathology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou, China (GRID:grid.506977.a) (ISNI:0000 0004 1757 7957); Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, China (GRID:grid.506977.a); Clinical Research Center for Cancer of Zhejiang Province, Hangzhou, China (GRID:grid.506977.a) 
19  Fudan University, Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China (GRID:grid.8547.e) (ISNI:0000 0001 0125 2443); Shanghai Genitourinary Cancer Institute, Shanghai, China (GRID:grid.8547.e); Fudan University, Department of Oncology, Shanghai Medical College, Shanghai, China (GRID:grid.8547.e) (ISNI:0000 0001 0125 2443) 
20  University of California, Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, San Francisco, USA (GRID:grid.266102.1) (ISNI:0000 0001 2297 6811); University of Oxford, Institute of Developmental and Regenerative Medicine, Oxford, UK (GRID:grid.4991.5) (ISNI:0000 0004 1936 8948) 
21  A*STAR, Computational Digital Pathology Lab, Bioinformatics Institute, Singapore, Singapore (GRID:grid.418325.9) (ISNI:0000 0000 9351 8132); A*STAR, Computational & Molecular Pathology Lab, Institute of Molecule and Cell Biology, Singapore, Singapore (GRID:grid.418812.6) (ISNI:0000 0004 0620 9243); Nanjing University of Information Science and Technology (NUIST), Institute for AI in Medicine, School of Artificial Intelligence, Nanjing, China (GRID:grid.260478.f) (ISNI:0000 0000 9249 2313) 
22  Yong Loo Lin School of Medicine, National University of Singapore, Department of Pathology, Singapore, Singapore (GRID:grid.4280.e) (ISNI:0000 0001 2180 6431) 
Pages
84
Publication year
2024
Publication date
Dec 2024
Publisher
Springer Nature B.V.
e-ISSN
2730664X
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3052944402
Copyright
© The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.