It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Developing high-energy and efficient battery technologies is a crucial aspect of advancing the electrification of transportation and aviation. However, battery innovations can take years to deliver. In the case of non-aqueous battery electrolyte solutions, the many design variables in selecting multiple solvents, salts and their relative ratios make electrolyte optimization time-consuming and laborious. To overcome these issues, we propose in this work an experimental design that couples robotics (a custom-built automated experiment named "Clio”) to machine-learning (a Bayesian optimization-based experiment planner named "Dragonfly”). An autonomous optimization of the electrolyte conductivity over a single-salt and ternary solvent design space identifies six fast-charging non-aqueous electrolyte solutions in two work-days and forty-two experiments. This result represents a six-fold time acceleration compared to a random search performed by the same automated experiment. To validate the practical use of these electrolytes, we tested them in a 220 mAh graphite∣∣LiNi0.5Mn0.3Co0.2O2 pouch cell configuration. All the pouch cells containing the robot-developed electrolytes demonstrate improved fast-charging capability against a baseline experiment that uses a non-aqueous electrolyte solution selected a priori from the design space.
Human-operated optimization of non-aqueous Li-ion battery liquid electrolytes is a time-consuming process. Here, the authors propose an automated workflow that couples robotic experiments with machine learning to optimize liquid electrolyte formulations without human intervention.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details



1 Carnegie Mellon University, Department of Mechanical Engineering, Pittsburgh, USA (GRID:grid.147455.6) (ISNI:0000 0001 2097 0344); Carnegie Mellon University, Wilton E. Scott Institute for Energy Innovation, Pittsburgh, USA (GRID:grid.147455.6) (ISNI:0000 0001 2097 0344)
2 Carnegie Mellon University, Wilton E. Scott Institute for Energy Innovation, Pittsburgh, USA (GRID:grid.147455.6) (ISNI:0000 0001 2097 0344); Carnegie Mellon University, Department of Materials Science and Engineering, Pittsburgh, USA (GRID:grid.147455.6) (ISNI:0000 0001 2097 0344)