It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
We investigate resonant third-harmonic generation in near-zero index thin films driven out-of-equilibrium by intense optical excitation. Adopting the Landau weak coupling formalism to incorporate electron–electron and electron–phonon scattering processes, we derive a novel set of hydrodynamic equations accounting for collision-driven nonlinear dynamics in sodium. By perturbatively solving hydrodynamic equations, we model third-harmonic generation by a thin sodium film, finding that such a nonlinear process is resonant at the near-zero index resonance of the third-harmonic signal. Thanks to the reduced absorption of sodium, we observe that third-harmonic resonance can be tuned by the impinging pump radiation angle, efficiently modulating the third-harmonic generation process. Furthermore, owing to the metallic sodium response at the pump optical wavelength, we find that the third-harmonic conversion efficiency is maximised at a peculiar thin film thickness where evanescent back-reflection provides increased field intensity within the thin film. Our results are relevant for the development of future ultraviolet light sources, with potential impact for innovative integrated spectroscopy schemes.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Department of Physical and Chemical Sciences, University of L’Aquila, Via Vetoio, 67100 L’Aquila, Italy
2 Department of Physical and Chemical Sciences, University of L’Aquila, Via Vetoio, 67100 L’Aquila, Italy; CNR-SPIN, c/o Dipartimento to di Scienze Fisiche e Chimiche, Via Vetoio, Coppito, L’Aquila 67100, Italy
3 CNR-SPIN, c/o Dipartimento to di Scienze Fisiche e Chimiche, Via Vetoio, Coppito, L’Aquila 67100, Italy