Full Text

Turn on search term navigation

© 2024. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Background

The blood–brain barrier serves as a critical interface between the bloodstream and brain tissue, mainly composed of pericytes, neurons, endothelial cells, and tightly connected basal membranes. It plays a pivotal role in safeguarding brain from harmful substances, thus protecting the integrity of the nervous system and preserving overall brain homeostasis. However, this remarkable selective transmission also poses a formidable challenge in the realm of central nervous system diseases treatment, hindering the delivery of large-molecule drugs into the brain. In response to this challenge, many researchers have devoted themselves to developing drug delivery systems capable of breaching the blood–brain barrier. Among these, blood–brain barrier penetrating peptides have emerged as promising candidates. These peptides had the advantages of high biosafety, ease of synthesis, and exceptional penetration efficiency, making them an effective drug delivery solution. While previous studies have developed a few prediction models for blood–brain barrier penetrating peptides, their performance has often been hampered by issue of limited positive data.

Results

In this study, we present Augur, a novel prediction model using borderline-SMOTE-based data augmentation and machine learning. we extract highly interpretable physicochemical properties of blood–brain barrier penetrating peptides while solving the issues of small sample size and imbalance of positive and negative samples. Experimental results demonstrate the superior prediction performance of Augur with an AUC value of 0.932 on the training set and 0.931 on the independent test set.

Conclusions

This newly developed Augur model demonstrates superior performance in predicting blood–brain barrier penetrating peptides, offering valuable insights for drug development targeting neurological disorders. This breakthrough may enhance the efficiency of peptide-based drug discovery and pave the way for innovative treatment strategies for central nervous system diseases.

Details

Title
Prediction of blood–brain barrier penetrating peptides based on data augmentation with Augur
Author
Zhi-Feng Gu; Yu-Duo, Hao; Tian-Yu, Wang; Pei-Ling, Cai; Zhang, Yang; Ke-Jun Deng; Lin, Hao; Lv, Hao
Pages
1-17
Section
Research article
Publication year
2024
Publication date
2024
Publisher
BioMed Central
e-ISSN
17417007
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3054142188
Copyright
© 2024. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.