It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
Skeletal muscle is composed of muscle fibers with different physiological characteristics, which plays an important role in regulating skeletal muscle metabolism, movement and body homeostasis. The type of skeletal muscle fiber directly affects meat quality. However, the transcriptome and gene interactions between different types of muscle fibers are not well understood.
Results
In this paper, we selected 180-days-old Large White pigs and found that longissimus dorsi (LD) muscle was dominated by fast-fermenting myofibrils and soleus (SOL) muscle was dominated by slow-oxidizing myofibrils by frozen sections and related mRNA and protein assays. Here, we selected LD muscle and SOL muscle for transcriptomic sequencing, and identified 312 differentially expressed mRNA (DEmRs), 30 differentially expressed miRNA (DEmiRs), 183 differentially expressed lncRNA (DElRs), and 3417 differentially expressed circRNA (DEcRs). The ceRNA network included ssc-miR-378, ssc-miR-378b-3p, ssc-miR-24-3p, XR_308817, XR_308823, SMIM8, MAVS and FOS as multiple core nodes that play important roles in muscle development. Moreover, we found that different members of the miR-10 family expressed differently in oxidized and glycolytic muscle fibers, among which miR-10a-5p was highly expressed in glycolytic muscle fibers (LD) and could target MYBPH gene mRNA. Therefore, we speculate that miR-10a-5p may be involved in the transformation of muscle fiber types by targeting the MYHBP gene. In addition, PPI analysis of differentially expressed mRNA genes showed that ACTC1, ACTG2 and ACTN2 gene had the highest node degree, suggesting that this gene may play a key role in the regulatory network of muscle fiber type determination.
Conclusions
We can conclude that these genes play a key role in regulating muscle fiber type transformation. Our study provides transcriptomic profiles and ceRNA interaction networks for different muscle fiber types in pigs, providing reference for the transformation of pig muscle fiber types and the improvement of meat quality.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer