It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
Streptococcus pneumoniae is a global cause of community-acquired pneumonia (CAP) and invasive disease in children. The CAP-IT trial (grant No. 13/88/11; https://www.capitstudy.org.uk/) collected nasopharyngeal swabs from children discharged from hospitals with clinically diagnosed CAP, and found no differences in pneumococci susceptibility between higher and lower antibiotic doses and shorter and longer durations of oral amoxicillin treatment. Here, we studied in-depth the genomic epidemiology of pneumococcal (vaccine) serotypes and their antibiotic resistance profiles.
Methods
Three-hundred and ninety pneumococci cultured from 1132 nasopharyngeal swabs from 718 children were whole-genome sequenced (Illumina) and tested for susceptibility to penicillin and amoxicillin. Genome heterogeneity analysis was performed using long-read sequenced isolates (PacBio, n = 10) and publicly available sequences.
Results
Among 390 unique pneumococcal isolates, serotypes 15B/C, 11 A, 15 A and 23B1 were most prevalent (n = 145, 37.2%). PCV13 serotypes 3, 19A, and 19F were also identified (n = 25, 6.4%). STs associated with 19A and 19F demonstrated high genome variability, in contrast to serotype 3 (n = 13, 3.3%) that remained highly stable over a 20-year period. Non-susceptibility to penicillin (n = 61, 15.6%) and amoxicillin (n = 10, 2.6%) was low among the pneumococci analysed here and was independent of treatment dosage and duration. However, all 23B1 isolates (n = 27, 6.9%) were penicillin non-susceptible. This serotype was also identified in ST177, which is historically associated with the PCV13 serotype 19F and penicillin susceptibility, indicating a potential capsule-switch event.
Conclusions
Our data suggest that amoxicillin use does not drive pneumococcal serotype prevalence among children in the UK, and prompts consideration of PCVs with additional serotype coverage that are likely to further decrease CAP in this target population. Genotype 23B1 represents the convergence of a non-vaccine genotype with penicillin non-susceptibility and might provide a persistence strategy for ST types historically associated with vaccine serotypes. This highlights the need for continued genomic surveillance.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer