It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
Vaccine efficacy (VE) assessed in a randomized controlled clinical trial can be affected by demographic, clinical, and other subject-specific characteristics evaluated as baseline covariates. Understanding the effect of covariates on efficacy is key to decisions by vaccine developers and public health authorities.
Methods
This work evaluates the impact of including correlate of protection (CoP) data in logistic regression on its performance in identifying statistically and clinically significant covariates in settings typical for a vaccine phase 3 trial. The proposed approach uses CoP data and covariate data as predictors of clinical outcome (diseased versus non-diseased) and is compared to logistic regression (without CoP data) to relate vaccination status and covariate data to clinical outcome.
Results
Clinical trial simulations, in which the true relationship between CoP data and clinical outcome probability is a sigmoid function, show that use of CoP data increases the positive predictive value for detection of a covariate effect. If the true relationship is characterized by a decreasing convex function, use of CoP data does not substantially change positive or negative predictive value. In either scenario, vaccine efficacy is estimated more precisely (i.e., confidence intervals are narrower) in covariate-defined subgroups if CoP data are used, implying that using CoP data increases the ability to determine clinical significance of baseline covariate effects on efficacy.
Conclusions
This study proposes and evaluates a novel approach for assessing baseline demographic covariates potentially affecting VE. Results show that the proposed approach can sensitively and specifically identify potentially important covariates and provides a method for evaluating their likely clinical significance in terms of predicted impact on vaccine efficacy. It shows further that inclusion of CoP data can enable more precise VE estimation, thus enhancing study power and/or efficiency and providing even better information to support health policy and development decisions.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer