Content area

Abstract

Automatic static cost analysis infers information about the resources used by programs without actually running them with concrete data, and presents such information as functions of input data sizes. Most of the analysis tools for logic programs (and many for other languages), as CiaoPP, are based on setting up recurrence relations representing (bounds on) the computational cost of predicates, and solving them to find closed-form functions. Such recurrence solving is a bottleneck in current tools: many of the recurrences that arise during the analysis cannot be solved with state-of-the-art solvers, including Computer Algebra Systems (CASs), so that specific methods for different classes of recurrences need to be developed. We address such a challenge by developing a novel, general approach for solving arbitrary, constrained recurrence relations, that uses machine-learning (sparse-linear and symbolic) regression techniques to guess a candidate closed-form function, and a combination of an SMT-solver and a CAS to check if it is actually a solution of the recurrence. Our prototype implementation and its experimental evaluation within the context of the CiaoPP system show quite promising results. Overall, for the considered benchmarks, our approach outperforms state-of-the-art cost analyzers and recurrence solvers, and solves recurrences that cannot be solved by them. Under consideration in Theory and Practice of Logic Programming (TPLP).

Details

1009240
Business indexing term
Title
A Machine Learning-based Approach for Solving Recurrence Relations and its use in Cost Analysis of Logic Programs
Publication title
arXiv.org; Ithaca
Publication year
2024
Publication date
Aug 29, 2024
Section
Computer Science
Publisher
Cornell University Library, arXiv.org
Source
arXiv.org
Place of publication
Ithaca
Country of publication
United States
University/institution
Cornell University Library arXiv.org
e-ISSN
2331-8422
Source type
Working Paper
Language of publication
English
Document type
Working Paper
Publication history
 
 
Online publication date
2024-11-27
Milestone dates
2024-05-11 (Submission v1); 2024-08-29 (Submission v2)
Publication history
 
 
   First posting date
27 Nov 2024
ProQuest document ID
3054657784
Document URL
https://www.proquest.com/working-papers/machine-learning-based-approach-solving/docview/3054657784/se-2?accountid=208611
Full text outside of ProQuest
Copyright
© 2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2024-11-28
Database
ProQuest One Academic