It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
In recent years, there has been notable advancement in programmable metasurfaces, primarily attributed to their cost-effectiveness and capacity to manipulate electromagnetic (EM) waves. Nevertheless, a significant limitation of numerous available metasurfaces is their capability to influence wavefronts only in reflection mode or transmission mode, thus catering to only half of the spatial coverage. To the best of our knowledge and for the first time, a novel graphene-assisted reprogrammable metasurface that offers the unprecedented capability to independently and concurrently manipulate EM waves within both half-spaces has been introduced in the THz frequency band. This intelligent programmable metasurface achieves wavefront control in reflection mode, transmission mode, and the concurrent reflection-transmission mode, all within the same polarization and frequency channel. The meta-atom is constructed with two graphene sections, enabling straightforward modification of wave behavior by adjusting the chemical potential distribution within each graphene segment via an external electronic source. The proposed functionalities encompass various programmable modes, including single and dual beam control in reflection mode, dual beam control in transmission mode, simultaneous control of dual beams in reflection mode-direct transmission, and vice versa, and control of beam steering in reflection mode-dual beams in transmission mode simultaneously. The proposed metasurface is expected to be reprogrammable due to wavefront manipulation in both half-spaces separately and continuously for various applications such as imaging systems, encryption, miniaturized systems, and next-generation wireless intelligent communications.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Iran University of Science and Technology, School of Electrical Engineering, Tehran, Iran (GRID:grid.411748.f) (ISNI:0000 0001 0387 0587)